Impedimetric genosensor for miRNA-34a detection in cell lysates using polypyrrole



This work reports the development of simple, practical, cost effective and label free genosensor prepared by electropolymerization of polypyrrole on pencil graphite electrode (PGE) for the determination of miRNA-34a from total RNA extracted from breast cancer cell lysate. The electrochemical entrapment of the probe (antimiRNA-34a) into polypyrrole (PPy) was carried out by electropolymerization using cyclic voltammetry method with a scan rate of 25 mV.s−1 versus Ag/AgCl. The electrochemical detection of the hybridization between the doped probe antimiRNA-34a with its complementary target, miRNA-34a was monitored by electrochemical impedance spectroscopy (EIS) by comparison of charge transfer resistance (Rct) values before and after hybridization. The established biosensor can detect miRNA-34a down to 0.2 μg.mL−1 (which correspond to 2 pmol/100 μL) with a linear range of 5–80 μg.mL−1 and discriminate target miRNA from other non-complementary sequences (miRNA-21, miRNA-122, and miRNA-192) with a high selectivity. The genosensor shows a better performance in analysis of human breast cancer cells samples (MCF-7) suggesting the real-time usability of the genosensor.


Electrochemical impedance spectroscopy miRNA-34a Human breast cancer cells Electropolymerization Polypyrrole Pencil graphite electrode 



The authors would like to acknowledge Professor Mehmet Özsöz and his team of researchers at Gediz University, Turkey, for the fruitful discussion and partial support of this work.

Supplementary material

10008_2017_3819_MOESM1_ESM.docx (93 kb)
Fig. S1 (DOCX 93 kb).


  1. 1.
    Wightman B, Ha I, Ruvkun G (1993) Post transcriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. Elegans. Cell 75:855–862CrossRefGoogle Scholar
  2. 2.
    Yang L, Wang YL, Liu S, Zhang PP, Chen Z, Liu M, Tang H (2014) miR-181b promotes cell proliferation and reduces apoptosis by repressing the expression of adenylyl cyclase 9 (AC9) in cervical cancer cells. FEBS Lett 588:124–130CrossRefGoogle Scholar
  3. 3.
    Patel A, Boufraqech M, Jain M, Zhang L, He M, Gesuwan K, Gulati N, Nilubol N, Fojo T, Kebebew E (2013) MiR-34a and MiR-483-5p are candidate serum biomarkers for adrenocortical tumors. Surgery 154:1224–1229CrossRefGoogle Scholar
  4. 4.
    Cogswell JP, Taylor JIA, Waters M, Shin Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC, Saunders AM, Roses AD, Richards CA (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimer Dis 14:27–41CrossRefGoogle Scholar
  5. 5.
    Schipper HM, Maes OC, Chertkow HM, Wang E (2007) MicroRNA expression in alzheimer blood mononuclear cells. J Gen Reg Sys Bio 1:263–281Google Scholar
  6. 6.
    Ardekani MA, Moslemi NM (2011) The role of microRNAs in human diseases. J Med Biotec 2:161–180Google Scholar
  7. 7.
    Harapan H, Andalas M (2015) The role of microRNAs in the proliferation, differentiation, invasion, and apoptosis of trophoblats during the occurrence of preeclampsia. J Tzu Chi Med 27:54–64CrossRefGoogle Scholar
  8. 8.
    Wang L, Liu C, Li C, Xue J, Zhao S, Zhan P, Lin Y, Zhang P, Jiang A, Chen W (2015) Effects of microRNA-221/222 on cell proliferation and apoptosis in prostate cancer cells. Gene 572:252–258CrossRefGoogle Scholar
  9. 9.
    Chakraborty S, Mazumdar M, Mukherjee S, Bhattacharjee P, Adhikary A, Manna A, Chakraborty S, Khan P, Sen A, Das T (2014) Restoration of p53/miR-34a regulatory axis decreases survival advantage and ensures Bax-dependent apoptosis of non-samll cell lung carcinoma cells. FEBS Lett 588:549–559CrossRefGoogle Scholar
  10. 10.
    Jayanthi VSA, Das AB, Saxena U (2017) Recent advances in biosensor development for the detection of cancer biomarkers. Biosens Bioelectron 91:15–23Google Scholar
  11. 11.
    Cardoso AR, Moreira FT, Fernandes R, Sales MGF (2016) Novel and simple electrochemical biosensor monitoring attomolar levels of miRNA-155 in breast cancer. Biosens Bioelectron 80:621–630CrossRefGoogle Scholar
  12. 12.
    Zhu Y, Qiu D, Yang G, Wang M, Zhang Q, Wang P, Badugu R (2016) Selective and sensitive detection of MiRNA-21 based gold-nanorod functionalized polydiacetylene microtube waveguide. Biosens Bioelectron 85:198–204CrossRefGoogle Scholar
  13. 13.
    Yammouri G, Mandli J, Mohammadi H, Amine A (2017) Development of an electrochemical label-free biosensor for microRNA-125a detection using pencil graphite electrode modified with different carbon nanomaterials. J Electroanal Chem 806:75–81Google Scholar
  14. 14.
    Pen JT, Sohn-Lee C, Rouhanifard SH, Ludwig J, Hafner M, Mihailovic A, Lim C, Holoch D, Berning P, Zavolan M, Tuschl T (2009) miRNA in situ hybridization in formaldehyde and EDC–fixed tissues. Nat Meth 6:139–141CrossRefGoogle Scholar
  15. 15.
    Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (2003) The microRNAs of Caenorhabditis Elegans. Gen Develop 17:991–1008CrossRefGoogle Scholar
  16. 16.
    Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281CrossRefGoogle Scholar
  17. 17.
    Chen A, Ridzon DA, Broomer AJ, Zhou Z, Lee H, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real- time quantification of microRNAs by stem-loop RT-PCR. Nuc Ac Res 33:179–188CrossRefGoogle Scholar
  18. 18.
    Wang M, Yin H, Fu Z, Guo Y, Wang X, Zhou Y, Ai S (2014) A label-free electrochemical biosensor for microRNA detection based on apoferritin-encapsulated cu nanoparticles. J Solid State Electr 18:2829–2835CrossRefGoogle Scholar
  19. 19.
    Mandli J, Mohammadi H, Amine A (2017) Electrochemical DNA sandwich biosensor based on enzyme amplified microRNA-21 detection and gold nanoparticles. Bioelectrochemistry 116:17–23CrossRefGoogle Scholar
  20. 20.
    Kilic T, Topkaya SN, Ozsoz M (2013) A new insight into electrochemical microRNA detection: a molecular caliper, p19 protein. Biosens Bioelectron 48:165–171CrossRefGoogle Scholar
  21. 21.
    Rafiee-Pour HA, Behpour M, Keshavarz M (2016) A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21. Biosens Bioelectron 77:202–207CrossRefGoogle Scholar
  22. 22.
    Kaplan M, Kilic T, Guler G, Mandli J, Amine A, Ozsoz M (2017) A novel method for sensitive microRNA detection: electro polymerization based doping. Biosens Bioelectron 92:770–778CrossRefGoogle Scholar
  23. 23.
    Garcia-Cruz A, Lee M, Zine N, Sigaud M, Bausells J, Errachid A (2015) Poly(pyrrole) microwires fabrication process on flexible thermoplastics polymers: application as a biosensing. Sens Actuator B 221:940–950CrossRefGoogle Scholar
  24. 24.
    Senel M, Nergiz C (2012) Novel amperometric glucose biosensor based on covalent immobilization of glucose oxidase on poly(pyrrolepropylic acid)/au nanocomposite. Cur ApPhys 12:1118–1124Google Scholar
  25. 25.
    Kilic T, Topkaya SN, Ariksoysal DO, Ozsoz M, Ballar P, Erac Y, Gozen O (2012) Electrochemical based detection of microRNA, mir21 in breast cancer cells. Biosens Bioelectron 38:195–201CrossRefGoogle Scholar
  26. 26.
    Tran HV, Piro B, Reisberg S, Tran LD, Duc HT, Pham MC (2013) Label-free and reagent less electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141. Biosens Bioelectron 49:164–169CrossRefGoogle Scholar
  27. 27.
    Panagopoulou MA, Stergiou DV, Roussis IG, Prodromidis MI (2010) Impedimetric biosensor for the assessment of the clotting activity of rennet. Anal Chem 82:8629–8636CrossRefGoogle Scholar
  28. 28.
    Suni II (2008) Impedance methods for electrochemical sensors using nanomaterials. TrAC 27:604–611Google Scholar
  29. 29.
    Özcan A, İlkbaş S (2015) Poly (pyrrole-3-carboxylic acid)-modified pencil graphite electrode for the determination of serotonin in biological samples by adsorptive stripping voltammetry. Sens Actuat B 215:518–524CrossRefGoogle Scholar
  30. 30.
    Rajesh M, Raj CJ, Kim BC, Cho BB, Ko JM, KH Y (2016) Supercapacitive studies on electropolymerized natural organic phosphate doped polypyrrole thin films. Electrochim Acta 220:373–383CrossRefGoogle Scholar
  31. 31.
    Canali C, Bashir H, Ørjan M, Martinsen G, Heiskanen A (2015) Conductometric analysis in bio-applications: a universal impedance spectroscopy based approach using modified electrodes. Sensors Actuators B212:544–550CrossRefGoogle Scholar
  32. 32.
    Tabrizi MA, Shamsipur MA (2015) Label-free electrochemical DNA biosensor based on covalent immobilization of salmonella DNA sequences on the nanoporous glassy carbon electrode. Biosens Bioelectron 69:100–105CrossRefGoogle Scholar
  33. 33.
    Goda T, Singi AB, Maeda Y, Matsumoto A, Torimura M, Aoki H, Miyahara Y (2013) Label-free potentiometry for detecting DNA hybridization using peptide nucleic acid and DNA probes. Sensors 13:2267–2278CrossRefGoogle Scholar
  34. 34.
    Erdem A, Eksin E, Congur G (2015) Indicator-free electrochemical biosensor for microRNA detection based on carbon nanofibers modified screen printed electrodes. J Electroanal Chem 755:167–117CrossRefGoogle Scholar
  35. 35.
    Congur G, Eksin E, Erdem A (2015) Impedimetric detection of microRNA at graphene oxide modified sensors. Electrochim Acta 172:20–27CrossRefGoogle Scholar
  36. 36.
    Isin D, Eksin E, Erdem A (2017) Graphene oxide modified single-use electrodes and their application for voltammetric miRNA analysis. Mater Sci Eng C 75:1242–1249CrossRefGoogle Scholar
  37. 37.
    Tran HV, Piro B, Reisberg S, Huy Nguyen L, Dung Nguyen T, Duc HT, Pham MC (2014) An electrochemical ELISA-like immunosenssor for miRNAs detection based screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes. Biosens Bioelectron 62:25–30CrossRefGoogle Scholar
  38. 38.
    Yin H, Zhou Y, Chen C, Zhu L, Shiyun A (2012) An electrochemical signal ‘off–on’ sensing platform for microRNA detection. Analyst 137:1389–1395CrossRefGoogle Scholar
  39. 39.
    Liu L, Jiang S, Wang L, Zhang Z, Xie G (2014) Direct detection of microRNA-126 at a femtomolar level using a glassy carbon electrode modified with chitosan, graphene sheets, and a poly(amidoamine) dendrimer composite with gold and silver nanoclusters. Microchim Acta 182:77–84CrossRefGoogle Scholar
  40. 40.
    Bartosik M, Hrstka R, Palecek E, Vojtesek B (2014) Magnetic bead-based hybridization assay for electrochemical detection of microRNA. Anal Chim Acta 813:35–40CrossRefGoogle Scholar
  41. 41.
    Gao Z, YH Y (2007) Direct labeling microRNA with an electocatalutic moiety and its application in ultrasensitive microRNA assays. Biosens Bioelectron 22:933–940CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratoire Génie des Procédés et Environnement, Faculté de Sciences et Techniques MohammediaUniversity Hassan II of CasablancaCasablancaMorocco

Personalised recommendations