Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1495–1506 | Cite as

Niobium: a promising Pd co-electrocatalyst for ethanol electrooxidation reactions

  • F. Moura Souza
  • L. S. Parreira
  • P. Hammer
  • B. L. Batista
  • M. C. Santos
Original Paper


This work reports the sol–gel synthesis and characterization of Pd x Nb y /C binary electrocatalysts applied to ethanol electrooxidation reactions (EORs). Catalysts were prepared using different Pd/Nb mass ratios (1:0; 1:1; 1:3; 3:1; 0:1) and were supported on Vulcan XC-72 carbon (20 wt%). The materials were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, inductively coupled plasma mass spectrometry, and X-ray photoelectron spectroscopy. The EOR catalytic activity was studied by cyclic voltammetry (CV) and chronoamperometry (CA). The results showed that the EOR current density peak using Pd1Nb1/C (45.5 mA mg−1) was 2.86 times higher than that of commercial Pd/C (15.9 mA mg−1). This catalyst also showed a less positive EOR onset potential and 2.35 times higher current density than Pd/C did in CA. The Pd1Nb1/C (− 0.54 V) showed onset potential more negative than Pd/C (− 0.50 V) for CO-stripping analysis. Additionally, the addition of Nb in the Pd/C reduces COads poisoning of the electrocatalyst. The results suggest that Nb decreases the poisoning effect of CO on the Pd surface due to the bifunctional mechanism in which Nb supplies oxygenated species for CO oxidation at poisoned Pd active sites. No evidence of Pd/Nb alloy formation has been found. The maximization of the bifunctional effect occurs in Pd1Nb1/C.


Alkaline direct ethanol fuel cells Ethanol electrooxidation reaction Palladium nanoparticles Niobium nanoparticles 

Supplementary material

10008_2017_3802_MOESM1_ESM.docx (7 mb)
ESM 1 (DOCX 7140 kb)


  1. 1.
    Spinacé E, Neto A, Linardi M (2004) Electro-oxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles. J Power Sources 129:121–126CrossRefGoogle Scholar
  2. 2.
    Wendt H, Götz M, Linardi M (2000) Fuel cell technology. Quím Nova 23:538–546CrossRefGoogle Scholar
  3. 3.
    Yu H, Zhou D, Zhu H (2014) Synthesis and characterization of Pd-La (OH) 3/C electrocatalyst for direct ethanol fuel cell. J Solid State Electrochem 18(1):125–131CrossRefGoogle Scholar
  4. 4.
    Guisbiers G, Khanal S, Ruiz-Zepeda F et al (2014) Cu–Ni nano-alloy: mixed, core–shell or Janus nano-particle? Nano 6:14630–14635Google Scholar
  5. 5.
    Choi YH, Jang YJ, Park H et al (2017) Carbon dioxide Fischer-Tropsch synthesis: a new path to carbon-neutral fuels. Appl Catal B Environ 202:605–610CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Zhang H, Zhai Y et al (2007) Investigation of self-humidifying membranes based on sulfonated poly (ether ether ketone) hybrid with sulfated zirconia supported Pt catalyst for fuel cell applications. J Power Sources 2:323–329CrossRefGoogle Scholar
  7. 7.
    Assumpção MHMT, da Silva SG, de Souza RFB et al (2014) Direct ammonia fuel cell performance using PtIr/C as anode electrocatalysts. Int J Hydrog Energy 39:5148–5152CrossRefGoogle Scholar
  8. 8.
    Nandenha J, De Souza RFB, Assumpção MHMT et al (2013) Preparation of PdAu/C-Sb2O5·SnO2 electrocatalysts by borohydride reduction process for direct formic acid fuel cell. Ionics (Kiel) 19:1207–1213CrossRefGoogle Scholar
  9. 9.
    Geraldes AN, Furtunato Da Silva D, Martins Da Silva JC et al (2015) Palladium and palladium-tin supported on multi wall carbon nanotubes or carbon for alkaline direct ethanol fuel cell. J Power Sources 275:189–199CrossRefGoogle Scholar
  10. 10.
    Brouzgou A, Podias A, Tsiakaras P (2013) PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review. J Appl Electrochem 43:119–136CrossRefGoogle Scholar
  11. 11.
    Pacheco Santos V, Del Colle V, de Lima RB, Tremiliosi-Filho G (2007) In situ FTIR studies of the catalytic oxidation of ethanol on Pt(111) modified by bi-dimensional osmium nanoislands. Electrochim Acta 52:2376–2385CrossRefGoogle Scholar
  12. 12.
    Antonin V, Assumpcao M, Silva J, Parreira L (2013) Synthesis and characterization of nanostructured electrocatalysts based on nickel and tin for hydrogen peroxide electrogeneration. Electrochim Acta 109:3431–3450CrossRefGoogle Scholar
  13. 13.
    Ziolek M (2003) Niobium-containing catalysts—the state of the art. Catal Today 78:47–64CrossRefGoogle Scholar
  14. 14.
    Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195:3431–3450CrossRefGoogle Scholar
  15. 15.
    Yang Z-Z, Liu L, Wang A-J et al (2017) Simple wet-chemical strategy for large-scaled synthesis of snowflake-like PdAu alloy nanostructures as effective electrocatalysts of ethanol and ethylene glycol oxidation. Int J Hydrog Energy 42:2034–2044CrossRefGoogle Scholar
  16. 16.
    Liu Q, Xu Y, Wang A, Feng J (2016) A single-step route for large-scale synthesis of core–shell palladium@platinum dendritic nanocrystals/reduced graphene oxide with enhanced electrocatalytic. J Power Sources 302:394–401CrossRefGoogle Scholar
  17. 17.
    Wang Q, Lu X, Xin Q, Sun G (2014) Polyol-synthesized Pt2.6Sn1Ru0.4/C as a high-performance anode catalyst for direct ethanol fuel cells. Chinese J Catal 35:1394–1401CrossRefGoogle Scholar
  18. 18.
    Neto AO, Dias RR, Tusi MM et al (2007) Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process. J Power Sources 1:87–91CrossRefGoogle Scholar
  19. 19.
    Yi Q, Niu F, Song L et al (2011) Electrochemical activity of novel titanium-supported porous binary Pd-Ru particles for ethanol oxidation in alkaline media. Electroanalysis 23:2232–2240CrossRefGoogle Scholar
  20. 20.
    Zhang J, Zhang B, Zhang X (2016) Enhanced catalytic activity of ternary NiCoPd nanocatalyst dispersed on carbon nanotubes toward methanol oxidation reaction in alkaline media. J Solid State Electrochem 21:447–453CrossRefGoogle Scholar
  21. 21.
    Lović J, Jović V (2017) Electrodeposited Pd and PdNi coatings as electrodes for the electrochemical oxidation of ethanol in alkaline media. J Solid State Electrochem.
  22. 22.
    Kamarudin MZF, Kamarudin SK, Masdar MS, Daud WRW (2013) Review: direct ethanol fuel cells. Int J Hydrog Energy 38:9438–9453CrossRefGoogle Scholar
  23. 23.
    Suffredini H, Tricoli V, Avaca L, Vatistas N (2004) Sol–gel method to prepare active Pt–RuO 2 coatings on carbon powder for methanol oxidation. Electrochemistry 10:1025–1028CrossRefGoogle Scholar
  24. 24.
    Shirley D (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 12:4709CrossRefGoogle Scholar
  25. 25.
    Wang Y, Nguyen TS, Liu X, Wang X (2010) Novel palladium–lead (Pd–Pb/C) bimetallic catalysts for electrooxidation of ethanol in alkaline media. J Power Sources 195:2619–2622CrossRefGoogle Scholar
  26. 26.
    Ting C, Liu C, Tai C et al (2015) The size effect of titania-supported Pt nanoparticles on the electrocatalytic activity towards methanol oxidation reaction primarily via the bifunctional mechanism. J Power Sources 280:166–172CrossRefGoogle Scholar
  27. 27.
    Wang R, Liao S, Ji S (2008) High performance Pd-based catalysts for oxidation of formic acid. J Power Sources 1:205–208CrossRefGoogle Scholar
  28. 28.
    Prabhu Y, Rao K, Kumar V, Kumari B (2014) X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J Nano Sci Eng 4:21CrossRefGoogle Scholar
  29. 29.
    Marcelo L (2010) Livros Introdução à Ciência e Tecnologia de Células a Combustível. Artliber, São PauloGoogle Scholar
  30. 30.
    Cheng K, Jiang J, Kong S et al (2016) Pd nanoparticles support on rGO-C@ TiC coaxial nanowires as a novel 3D electrode for NaBH 4 electrooxidation. Int J Hydrog Energy 42:2943–2951CrossRefGoogle Scholar
  31. 31.
    Qiu X, Dai Y, Tang Y et al (2015) One-pot synthesis of gold–palladium@palladium core–shell nanoflowers as efficient electrocatalyst for ethanol electrooxidation. J Power Sources 278:430–435CrossRefGoogle Scholar
  32. 32.
    Ji Y, Ying Y, Pan Y et al (2016) Palladium networks decorated by cuprous oxide for remarkably enhanced electrocatalytic activity of methanol oxidation reaction with high CO-tolerance. J Power Sources 329:115–122CrossRefGoogle Scholar
  33. 33.
    Hong J, Kim Y, Wi D et al (2016) Ultrathin free-standing ternary-alloy nanosheets. Angew Chem 55(8):2753–2758CrossRefGoogle Scholar
  34. 34.
    Li G, Xu H, Lu X et al (2015) PdCo nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation. Angew Chem Int Ed 54(12):3669–3673CrossRefGoogle Scholar
  35. 35.
    Wang A, He X, Lu X, Xu H (2015) Palladium–cobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation. Angew Chem Int Ed 54(12):3669–3673CrossRefGoogle Scholar
  36. 36.
    Cui Q, Chao S, Bai Z et al (2014) Based on a new support for synthesis of highly efficient palladium/hydroxyapatite catalyst for ethanol electrooxidation. Electrochim Acta 132:31–36CrossRefGoogle Scholar
  37. 37.
    Zhang K, Xiong Z, Li S et al (2017) Cu 3 P/RGO promoted Pd catalysts for alcohol electro-oxidation. J Alloys Compd 706:89–96CrossRefGoogle Scholar
  38. 38.
    Zeinalipour-Yazdi CD, Willock DJ, Thomas L et al (2016) CO adsorption over Pd nanoparticles: a general framework for IR simulations on nanoparticles. Surf Sci 646:210–220CrossRefGoogle Scholar
  39. 39.
    Head AR, Karslıoǧlu O, Gerber T et al (2017) CO adsorption on Pd(100) studied by multimodal ambient pressure X-ray photoelectron and infrared reflection absorption spectroscopies. Surf Sci 665:51–55CrossRefGoogle Scholar
  40. 40.
    Martin NM, Van den Bossche M, Grönbeck H et al (2014) CO adsorption on clean and oxidized Pd(111). J Phys Chem C 118(2):1118–1128CrossRefGoogle Scholar
  41. 41.
    Geraldes AN, da Silva DF, e Silva LG de A, et al (2015) Binary and ternary palladium based electrocatalysts for alkaline direct glycerol fuel cell. J Power Sources 293:823–830Google Scholar
  42. 42.
    AV. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom CJP NIST X-ray photoelectron spectroscopy (XPS) database, Version 3.5. Accessed 13 Apr 2017
  43. 43.
    AV. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom CJP NIST X-ray photoelectron spectroscopy (XPS) database, Version 3.5Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • F. Moura Souza
    • 1
  • L. S. Parreira
    • 2
  • P. Hammer
    • 3
  • B. L. Batista
    • 1
  • M. C. Santos
    • 1
  1. 1.LEMN—Centro de Ciências Naturais e Humanas (CCNH)Universidade Federal do ABC (UFABC)Santo AndreBrazil
  2. 2.Instituto de QuímicaUniversidade de São PauloSao PauloBrazil
  3. 3.Instituto de Química de Araraquara, Departamento de Físico-QuímicaUniversidade Estadual Paulista (UNESP)AraraquaraBrazil

Personalised recommendations