Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1403–1411 | Cite as

Carbon ceramic electrodes modified with mixed oxides SiO2/SnO2 for determination of levofloxacin

  • Juliane Rutckeviski Ciórcero
  • Giselle Nathaly Calaça
  • Christiana Andrade Pessôa
Original Paper
  • 62 Downloads

Abstract

The preparation of a carbon ceramic electrode modified with SnO2 (CCE/SnO2) using tin dibutyl diacetate as precursor was optimized by a 23 factorial design. The factors analyzed were catalyst (HCl), graphite/organic precursor ratio, and inorganic precursor (dibutyltin diacetate). The statistical treatment of the data showed that only the second-order interaction effect, catalyst × inorganic precursor, was significant at 95% confidence level, for the electrochemical response of the system. The obtained material was characterized by scanning electron microscopy (MEV), X-ray diffraction (XRD), RAMAN spectroscopy, XPS spectra, and voltammetric techniques. From the XPS spectra, it was confirmed the formation of the Si–O–Sn bond by the shift in the binding energy values referred to Sn 3d3/2 due to the interaction of Sn with SiOH species. The incorporation of SnO2 provided an increment of the electrode response for levofloxacin, with Ipa = 147.0 μA for the ECC and Ipa = 228.8 μA for ECC/SnO2, indicating that SnO2 when incorporated into the silica network enhances the electron transfer process. Under the optimized working conditions, the peak current increased linearly with the levofloxacin concentration in the range from 6.21×10−5 to 6.97×10−4 mol L−1 with quantification and detection limits of 3.80×10−5 mol L−1 (14.07 mg L−1) and 1.13×10−5 mol L−1 (4.18 mg L−1), respectively.

Keywords

Tin oxide Sol–gel Carbon ceramic electrode Levofloxacin Factorial design 

Supplementary material

10008_2017_3794_MOESM1_ESM.docx (214 kb)
ESM 1 (DOCX 213 kb)

References

  1. 1.
    Gun G, Tsionsky M, Lev O (1994) Voltammetric studies of composite ceramic carbon working electrodes. Anal Chim Acta 294:261–270CrossRefGoogle Scholar
  2. 2.
    Tsionsky M, Gun G, Giezer V, Lev O (1994) Sol-gel-derived ceramic-carbon composite electrodes: introduction and scope of applications. Anal Chem 66:1747–1753CrossRefGoogle Scholar
  3. 3.
    Alfaya AAS, Kubota LT (2002) A utilização de materiais obtidos pelo processo de sol-gel na construção de biossensores. Quim Nova 25:835–841CrossRefGoogle Scholar
  4. 4.
    Kutner W, Wang J, L'her M, Buck RP (1998) Analytical aspects of chemically modified electrodes: classification, critical evaluation and recommendations. Pure Appl Chem 70:1301–1318CrossRefGoogle Scholar
  5. 5.
    Frenzer G, Maier WF (2006) Amorphous porous mixed oxides: sol-gel ways to a highly versatile class of materials and catalysts. Rev Mater Res 36:281–233CrossRefGoogle Scholar
  6. 6.
    Vives S, Meunier C (2008) Influence of the synthesis route on sol–gel SiO2–TiO2 (1:1), xerogels and powders. Int Ceram 34:37–44CrossRefGoogle Scholar
  7. 7.
    Kurihara LA, Fujiwara ST, Alfaya RVS, Gushikem Y, Alfaya AAS, Castro SC (2004) Copper (II) adsorbed on SiO2/SnO2 obtained by the sol–gel processing method: application as electrochemical sensor for ascorbic acid. J Colloid Interface Sci 274:579–586CrossRefGoogle Scholar
  8. 8.
    Canevari TC, Arguello J, Francisco MSP, Gushikem Y (2007) Cobalt phthalocyanine prepared in situ on a sol–gel derived SiO2/SnO2 mixed oxide: application in electrocatalytic oxidation of oxalic acid. J Electroanal Chem 609:61–67CrossRefGoogle Scholar
  9. 9.
    Zaitseva G, Gushikem Y, Ribeiro ES, Rosatto SS (2002) Electrochemical property of methylene blue redox dye immobilized on porous silica–zirconia–antimonia mixed oxide. Electrochim Acta 47:1469–1474CrossRefGoogle Scholar
  10. 10.
    Francisco MSP, Cardoso WS, Kubota LT, Gushikem Y (2007) Electrocatalytic oxidation of phenolic compounds using an electrode modified with Ni(II) porphyrin adsorbed on SiO2/Nb2O5- phosphate synthesized by the sol–gel method. J Electroanal Chem 609:61–67CrossRefGoogle Scholar
  11. 11.
    Pereira AC, Santos AS, Kubota LT (2003) O-Phenylenediamine adsorbed onto silica gel modified with niobium oxide for electrocatalytic NADH oxidation. Electrochim Acta 48:3541–3550CrossRefGoogle Scholar
  12. 12.
    Maroneze CM, Arenas LT, Luz RCS, Benvenutti EV, Landers R, Gushikema Y (2008) Meldola blue immobilized on a new SiO2/TiO2/graphite composite for electrocatalytic oxidation of NADH. Electrochim Acta 53:4167–4175CrossRefGoogle Scholar
  13. 13.
    Canevari TC, Vinhas RCG, Landers R, Gushikem Y (2011) SiO2/SnO2/Sb2O5 microporous ceramic material for immobilization of Meldola’s blue: application as an electrochemical sensor for NADH. Biosens Bioelectron 26:2402–2406CrossRefGoogle Scholar
  14. 14.
    Vuong DD, Hien VX, Trung KQ, Chien ND (2011) Synthesis of SnO2 micro-spheres, nano-rods and nano-flowers via simple hydrothermal route. Phys E 44:345–349CrossRefGoogle Scholar
  15. 15.
    Mathur S, Barth S, Shen H, Pyun JC, Werner U (2005) Size-dependent photoconductance in SnO2 nanowires. Small 7:713–771CrossRefGoogle Scholar
  16. 16.
    Xu X, Zhuang J, Wang X (2008) SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. J Am Chem Soc 130:12527–12535CrossRefGoogle Scholar
  17. 17.
    Cardoso WS, Francisco MSP, Lucho AMS, Gushikem Y (2004) Synthesis and acid properties of the SiO2/SnO2 mixed oxides obtained by the sol–gel process. Evaluation of immobilized copper hexacyanoferrate as an electrochemical probe. Solid State Ionics 167:165–173CrossRefGoogle Scholar
  18. 18.
    Canevari TC, Luz RCS, Gushikem Y (2008) Electrocatalytic determination of nitrite on a rigid disk electrode having cobalt phthalocyanine prepared in situ. Electroanalysis 20:765–770CrossRefGoogle Scholar
  19. 19.
    Arguellos J, Magossos HA, Landers R, Pimentel VLC, Gushikem Y (2010) Synthesis, characterization and electroanalytical application of a new SiO2/SnO2 carbon ceramic electrode. Electrochim Acta 56:340–345CrossRefGoogle Scholar
  20. 20.
    Tang L, Tong Y, Zheng R, Liu W, Gu Y, Li C, Chen R, Zhang Z (2014) Ag nanoparticles and electrospun Ce-O2-Au composite nanofibers modified glassy carbon electrode for determination of levodloxacin. Sensors Actuators 203:95–101CrossRefGoogle Scholar
  21. 21.
    Wang F, Zhu L, Zhang L (2014) Electrochemical sensor for levofloxacin based on molecularly imprinted polypyrrole-graphene-gold nanoparticles modified electrode. Sensors Actuators B Chem 192:642–647CrossRefGoogle Scholar
  22. 22.
    Shao X, Li Y, Liu Y, Song Z (2011) Rapid determination of levofloxacin in pharmaceuticals and biological fluids using a new chemiluminescence system. J Anal Chem 66:102–107CrossRefGoogle Scholar
  23. 23.
    Ahmad I, Bano R, Sheraz MA, Ahmed S, Mirza T, Ansari SA (2013) Photodegradation of levofloxacin in aqueous and organic solvents: a kinetic study. Acta Pharma 63:223–229CrossRefGoogle Scholar
  24. 24.
    Radi A, El-sherif Z (2002) Determination of levofloxacin in human urine by adsorptive square-ware anodic stripping voltammetry on a glassy carbon electrode. Talanta 58:319–324CrossRefGoogle Scholar
  25. 25.
    Arguellos J, Magossos HA, Ramosa RR, Canevari TC, Landers R, Pimentel VLC, Gushikem Y (2009) Structural and electrochemical characterization of a cobalt phthalocyanine bulk-modified SiO2/SnO2 carbon ceramic electrode. Electrochim Acta 54:1948–1953CrossRefGoogle Scholar
  26. 26.
    Skeika T, Pessoa C, Fujiwara ST, Nagata N (2010) Otimização das condições de preparação de eletrodos à base de carbono cerâmico utilizando-se planejamento fatorial. Quím Nova 33:629–633CrossRefGoogle Scholar
  27. 27.
    Mirceski V, Lovric M (2001) Ohmic drop effects in square-wave voltammetry. J Electroanal Chem 497:114–124CrossRefGoogle Scholar
  28. 28.
    Brett CMA, Brett AMO (1994) Electrochemistry: principles, methods, and applications. Oxford University Press, New YorkGoogle Scholar
  29. 29.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley & Sons Inc., New YorkGoogle Scholar
  30. 30.
    Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhaes-Paniago RM, Pimenta A (2006) General equation for the determination of the crystallite size La of nanographite by raman spectroscopy. Appl Phys Lett 88:163–106CrossRefGoogle Scholar
  31. 31.
    Lobo AO, Martin AA, Antunes EF, Trava-airoldi VJ, Corat EJ (2005) Caracterização de materiais carbonosos por espectroscopia Raman. Rev Bras Apli Vácuo 24:98–103Google Scholar
  32. 32.
    Silveira G, Morais A, Villis PCM, Maroneze CM, Gushikem Y, Lucho AMS, Pissetti FL (2012) Electrooxidation of nitrite on a silica–cerium mixed oxide carbon paste electrode. J Colloid Interface Sci 369:302–308CrossRefGoogle Scholar
  33. 33.
    Wepasnick KA, Smith BA, Bitter JL, Fairbrother DH (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396:1003–1014CrossRefGoogle Scholar
  34. 34.
    Jimênez VM, Mejias JA, Espinois JP, Gonzalez-Elipe AR (1996) Interface effects for metal oxide thin films deposited on another metal oxide II. SnO2 deposited on SiO2. Surf Sci 366:545–555CrossRefGoogle Scholar
  35. 35.
    Huang H, Lee YC, Chow CL, Tan OK, Tse MS, Guo J, White T (2009) Plasma treatment of SnO2 nanocolumn arrays deposited by liquid injection plasma-enhanced chemical vapor deposition for gas sensors. Sensors Actuators B Chem 138:201–206CrossRefGoogle Scholar
  36. 36.
    Vincent CB (2000) Handbook of Monochromatic XPS Spectra: The Elements of Native Oxides. Wiley, California Google Scholar
  37. 37.
    Gao X, Wachs IE (1999) Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties. Catal Today 51:233–254CrossRefGoogle Scholar
  38. 38.
    Cardoso WS, Francisco MSP, Landers R, Gushikem Y (2005) Co (II) porphyrin adsorbed on SiO2/SnO2/phosphate prepared by the sol–gel method application in electroreduction of dissolved dioxygen. Electrochim Acta 50:4378–4384CrossRefGoogle Scholar
  39. 39.
    Fontanesi C, Leonelli C, Manfredini T, Siligardi C, Pellacani GC (1998) Characterisation of the surface conductivity of glassy materials by means of impedance spectroscopy measurements. J Eur Ceram Soc 18:1593–1598CrossRefGoogle Scholar
  40. 40.
    Mocak J, Bond AM, Mitchell S, Scollary GA (1997) Statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques (technical report). Pure Appl Chem 69:297–328CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Juliane Rutckeviski Ciórcero
    • 1
  • Giselle Nathaly Calaça
    • 1
  • Christiana Andrade Pessôa
    • 1
  1. 1.Departamento de QuímicaUniversidade Estadual de Ponta Grossa – UEPGPonta GrossaBrazil

Personalised recommendations