Skip to main content

Advertisement

Log in

Facile synthesis of ZnS/MnS nanocomposites for supercapacitor applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, we have reported a facile fabrication of pristine zinc sulfide (ZnS), manganese sulfide (MnS), and ZnS/MnS nanocomposites (NCs) via cost-effective chemical precipitation method for electrochemical supercapacitor applications. The XRD, HR-TEM, and XPS analyses confirm the formation of ZnS/MnS NCs in the synthesized product. The electrochemical properties of ZnS/MnS NC electrode showed high specific capacitance of 884 F g−1 at a scan rate of 2 mV s−1. Besides, we have fabricated a symmetric supercapacitor using ZnS/MnS NCsǁZnS/MnS NCs which exhibited a maximum energy density of 91 Wh kg−1 at a power density of 7.78 kW kg−1 with stable capacitance retention after 5000 cycles. Thus, the synergetic effect generated from the wurtzite-type hexagonal structure of ZnS/MnS leads to superior electron/ion transfer resulting in the enhanced electrochemical performance of the ZnS/MnS NCs which might be an ideal choice for cost-effective, high-performance supercapacitor applications.

ZnS/MnS NC electrodes for supercapacitor application

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Winter M (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270

    Article  CAS  Google Scholar 

  2. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 43:797–828

    Article  Google Scholar 

  3. Conway BE (1999) Electrochemical capacitors: scientific fundamentals and technological applications. Plenum Press, New York

    Google Scholar 

  4. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  5. Pujari RB, Lokhande AC, Yadav AA, Kim JH, Lokhande CD (2016) Synthesis of MnS microfibers for high performance flexible supercapacitors. Mater Des 108:510–517

    Article  CAS  Google Scholar 

  6. Li Y, Liu S, Chen W, Li S, Shi L, Zhao Y (2017) Facile synthesis of flower-like cobalt sulfide hierarchitectures with superior electrode performance for supercapacitors. J Alloys Compd 712:139–146

    Article  CAS  Google Scholar 

  7. Krishnamoorthy K, Pazhamalai P, Kim SJ (2017) Ruthenium sulfide nanoparticles as a new pseudocapacitive material for supercapacitor. Electrochim Acta 227:85–94

    Article  CAS  Google Scholar 

  8. Jayalakshmi M, Rao MM (2006) Synthesis of zinc sulphide nanoparticles by thiourea hydrolysis and their characterization for electrochemical capacitor applications. J Power Sources 157:624–629

    Article  CAS  Google Scholar 

  9. Ramachandran R, Saranya M, Kollu P, Raghupathy BPC, Jeong SK, Grace AN (2015) Solvothermal synthesis of zinc sulfide decorated graphene (ZnS/G) nanocomposites for novel supercapacitor electrodes. Electrochim Acta 178:647–657

    Article  CAS  Google Scholar 

  10. Zhang S, Yin B, Jiang H, Qu F, Umar A, Wu X (2015) Hybrid ZnO/ZnS nanoforests as the electrode materials for high performance supercapacitor application. Dalton Trans 44:2409–2415

    Article  CAS  Google Scholar 

  11. Li GC, Liu M, Wu MK, Liu PF, Zhou Z, Zhu SR, Liu R, Han L (2016) MOF-derived self-sacrificing route to hollow NiS2/ZnS nanospheres for high performance supercapacitors. RSC Adv 6:103517–103522

    Article  CAS  Google Scholar 

  12. Ning J, Zhang D, Song H, Chen X, Zhou J (2016) Branched carbon-encapsulated MnS core/shell nanochains prepared via oriented attachment for lithium-ion storage. J Mater Chem A 4:12098–12105

    Article  CAS  Google Scholar 

  13. Chen T, Tang Y, Qiao Y, Liu Z, Guo W, Song J, Mu S, Yu S, Zhao Y, Gao F (2016) All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystals and activated carbon materials. Sci Rep 6:23289–23289

    Article  CAS  Google Scholar 

  14. Tang Y, Chen T, Yu S (2015) Morphology controlled synthesis of monodispersed manganese sulfide nanocrystals and their primary application in supercapacitors with high performances. Chem Commun 51:9018–9021

    Article  CAS  Google Scholar 

  15. Javed MS, Chen J, Chen L, Xi Y, Zhang C, Wan B, Hu C (2016) Flexible full-solid state supercapacitors based on zinc sulfide spheres growing on carbon textile with superior charge storage. J Mater Chem A 4:667–674

    Article  CAS  Google Scholar 

  16. Javed MS, Han X, Hu C, Zhou M, Huang Z, Tang X, Gu X (2016) Tracking pseudocapacitive contribution to superior energy storage of MnS nanoparticles grown on carbon textile. ACS Appl Mater Interfaces 8:24621–24628

    Article  CAS  Google Scholar 

  17. Li X, Shen J, Li N, Ye M (2015) Fabrication of γ-MnS/rGO composite by facile one-pot solvothermal approach for supercapacitor applications. J Power Sources 282:194–201

    Article  CAS  Google Scholar 

  18. Wang Z, Daemen LL, Zhao Y, Zha CS, Downs RT, Wang X, Wang ZL, Hemley RJ (2005) Morphology-tuned wurtzite-type ZnS nanobelts. Nat Mater 4:922–927

    Article  CAS  Google Scholar 

  19. Huarac JB, Palomino J, Resto O, Wang J, Jadwisienczak WM, Weiner BR, Morell G (2014) Highly-crystalline γ-MnS nanosaws. RSC Adv 4:38103–38110

    Article  Google Scholar 

  20. Qi K, Selvaraj R, Jeong U, Al-Kindy SMZ, Sillanpaa M, Kim Y, Tai CW (2015) Hierarchical-like multipod γ-MnS microcrystals: solvothermal synthesis, characterization and growth mechanism. RSC Adv 5:9618–9620

    Article  CAS  Google Scholar 

  21. Arul NS, Mangalaraj D, Han JI, Cavalcante LS (2015) Structure and electrochemical detection of xenobiotic micro-pollutant hydroquinone using CeO2 nanocrystals. RSC Adv 5:70558–70565

    Article  Google Scholar 

  22. Kisi EH, Elcombe MM (1989) u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction. Acta Cryst C45:1867–1870

    CAS  Google Scholar 

  23. Corliss L, Elliott N, Hastings J (1956) Magnetic structures of the polymeric forms of manganous sulfide. Phys Rev 104:924–928

    Article  CAS  Google Scholar 

  24. Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. J Appl Crystallogr 22:151–152

    CAS  Google Scholar 

  25. Rietveld HM (1967) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  26. Lutterotti L, Matthies S, Wenk HR (1999) MAUD: a friendly Java program for material analysis using diffraction. IUCr: Newsl CPD 21:14–15

    Google Scholar 

  27. Bortolotti M, Lutterotti L, Lonardelli I (2009) ReX: a computer program for structural analysis using powder diffraction data. J Appl Crystallogr 42:538–539

    Article  CAS  Google Scholar 

  28. Roosen AR, McCormack RP, Carter WC (1998) Wulffman: a tool for the calculation and display of crystal shapes. Comput Mater Sci 11:16–26

    Article  Google Scholar 

  29. Finger LW, Cox DE, Jephcoat AP (1994) A correction for powder diffraction peak asymmetry due to axial divergence. J Appl Crystallogr 27:892–900

    Article  CAS  Google Scholar 

  30. Stephens PW (1999) Phenomenological model of anisotropic peak broadening in powder diffraction. J Appl Crystallogr 32:281–289

    Article  CAS  Google Scholar 

  31. Albinati A, Willis BTM (2016) The Rietveld method. International Tables for Crystallography. https://doi.org/10.1107/97809553602060000614

  32. Ferrari M, Lutterotti L (1994) Method for the simultaneous determination of anisotropic residual stress and texture by X-ray diffraction. J Appl Phys 76:7246–7254

    Article  CAS  Google Scholar 

  33. Will G (2006) Powder diffraction: the Rietveld method and the two stage method to determine and refine crystal structures from powder diffraction data, 1st edn. Springer, Berlin, Heidelberg.

  34. Mondal C, Singh A, Sahoo R, Sasmal AK, Negishi Y, Pal T (2015) Preformed ZnS nanoflower prompted evolution of CuS/ZnS p-n heterojunctions for exceptional visible-light driven photocatalytic activity. New J Chem 39:5628–5635

    Article  CAS  Google Scholar 

  35. Quan HY, Cheng BC, Chen DZ, Su XH, Xiao YH, Lei SJ (2016) One-pot synthesis of α-MnS/nitrogen doped reduced graphene oxide hybrid for high performance asymmetric supercapacitors. Electrochim Acta 210:557–566

    Article  CAS  Google Scholar 

  36. Zheng J, Yuan X, Ikezawa M, Jing P, Liu X, Zheng Z, Kong X, Zhao J, Masumoto Y (2009) Efficient photoluminescence of Mn2+ ions in MnS/ZnS core/shell quantum dots. J Phys Chem C 113:16969–16974

    Article  CAS  Google Scholar 

  37. Tang Y, Chen T, Yu S, Qiao Y, Mu S, Hu J, Gao F (2015) Synthesis of graphene oxide anchored porous manganese sulfide nanocrystals via the nanoscale Kirkendall effect for supercapacitors. J Mater Chem A 3:12913–12919

    Article  CAS  Google Scholar 

  38. Yan H, Li T, Lu Y, Cheng J, Peng T, Xu J, Yang L, Hua X, Liu Y, Luo Y (2016) Template-free synthesis of ordered ZnO@ZnS core-shell arrays for high performance supercapacitors. Dalton Trans 45:17980–17986

    Article  CAS  Google Scholar 

  39. Li H, Yu M, Wang F, Liu P, Liang Y, Xiao J, Wang CX, Tong Y, Yang G (2013) Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun 4:1894

    Article  CAS  Google Scholar 

  40. Arul NS, Mangalaraj D, Ramachandran R, Grace AN, Han JI (2015) Fabrication of CeO2/Fe2O3 composite nanospindles for enhanced visible driven photocatalyst and supercapacitor electrodes. J Mater Chem A 3:15248–15258

    Article  CAS  Google Scholar 

  41. Arul NS, Han JI, Chen PC (2017) Fabrication of β-Ni(OH)2γ-Fe2O3 nanostructures for high-performance asymmetric supercapacitors. J Solid State Electrochem. https://doi.org/10.1007/s10008-017-3769-y

  42. Xiao X, Liu X, Zhao H, Chen D, Liu F, Xiang J, Hu Z, Li Y (2013) Facile shape control of Co3O4 and the effect of the crystal plane on electrochemical performance. Adv Mater 24:5762–5766

    Article  Google Scholar 

  43. Qin T, Liu B, Wen Y, Wang Z, Jiang X, Wan Z, Peng S, Cao G, He D (2016) Freestanding flexible graphene foams@polypyrrole@MnO2 electrodes for high-performance supercapacitors. J Mater Chem A 4:9196–9203

    Article  CAS  Google Scholar 

  44. Nagamuthu S, Vijayakumar S, Muralidharan G (2014) Ag incorporated Mn3O4/Ac nanocomposite based supercapacitor devices with high energy density and power density. Dalton Trans 43:17528–17538

    Article  CAS  Google Scholar 

  45. Kumar A, Sanger A, Kumar A, Mishra YK, Chandra R (2016) Performance of high energy density symmetric supercapacitors based on sputtered MnO2 nanorods. ChemistrySelect 1:3885–3891

    Article  CAS  Google Scholar 

  46. Li Z, An Y, Hu Z, An N, Zhang Y, Guo B, Zhang Z, Yang Y, Wu H (2016) Preparation of a two-dimensional flexible MnO2/graphene thin film and its application in a supercapacitor. J Mater Chem A 4:10618–10626

    Article  CAS  Google Scholar 

  47. Nagamuthu S, Vijayakumar S, Muralidharan G (2013) Bipolymer-assisted synthesis of λ-MnO2 nanoparticles as an electrode material for aqueous symmetric supercapacitor devices. Ind Eng Chem Res 52:18262–18268

    Article  CAS  Google Scholar 

  48. Zhang Y, Hu Z, An Y, Guo B, An N, Liang Y, Wu H (2016) High-performance symmetric supercapacitor based on manganese oxyhydroxide nanosheets on carbon cloth as binder-free electrodes. J Power Sources 311:121–129

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03030456). Also, Brazilian author acknowledges the financial support of agencies CNPq (304531/2013-8), CAPES, and FAPEPI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Sabari Arul or Jeong In Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arul, N.S., Cavalcante, L.S. & In Han, J. Facile synthesis of ZnS/MnS nanocomposites for supercapacitor applications. J Solid State Electrochem 22, 303–313 (2018). https://doi.org/10.1007/s10008-017-3782-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3782-1

Keywords

Navigation