Skip to main content

Advertisement

Log in

Boehmite-coated microporous membrane for enhanced electrochemical performance and dimensional stability of lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A heat-resistant boehmite-coated polypropylene (PP) membrane has been successfully fabricated and its potential application as a promising separator in the lithium-ion battery was explored. The boehmite powders with average sizes of 0.78, 1.03, and 1.72 μm, respectively, were used to fabricate the coated membrane. It was demonstrated that the coated membrane prepared by boehmite with a 0.78-μm size showed superior heat tolerance and proper air permeability. As compared to the commercialized PP membrane, such coated membrane presented improved electrolyte uptake, better interface stability, and enhanced ionic conductivity. In addition, the lithium iron phosphate (LiFePO4)/Li cell using this composite membrane exhibited better rate capability and cycling retention than that using PP membrane owing to its facile ion transport and excellent interfacial compatibility. The coating layer showed an advantage on solid electrolyte interface film formation and greatly reduced charge transfer resistance. All these fascinating characteristics would boost the application of this composite membrane for high-performance lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lopes A, Ribeiro C, Sencadas V, Botelho G, Lanceros-Méndez S (2014) Effect of filler content on morphology and physical–chemical characteristics of poly (vinylidene fluoride)/NaY zeolite-filled membranes, J Mater Sci 49: 3361-3370.

  2. Uchida H, Ishikawa M, Mohamedi MU (2003) AC-impedance measurements during thermal runaway process in several lithium/polymer batteries. J. Power Sources 119:821–825

    Article  Google Scholar 

  3. Venugopal G, Moore J, Howard J, Pendalwar S (1999) Characterization of microporous separators for lithium-ion batteries. J Power Sources 77:34–41

    Article  CAS  Google Scholar 

  4. Jiang W, Liu Z, Kong Q, Yao J, Zhang C, Han P, Cui G (2013) A high temperature operating nanofibrous polyimide separator in Li-ion battery. Solid State Ionics 232:44–48

    Article  CAS  Google Scholar 

  5. Jung YS, Cavanagh AS, Gedvilas L, Widjonarko NE, Scott ID, Lee SH, Kim GH, George SM, Dillon AC (2012) Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes. Adv Energy Mat 2:1022–1027

    Article  CAS  Google Scholar 

  6. Miao Y, Zhu G, Hou H, Xia Y, Liu T (2013) Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J Power Sources 226:82–86

    Article  CAS  Google Scholar 

  7. Zhang S (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364

    Article  CAS  Google Scholar 

  8. Juang R, Hsieh C, Chen P, Chen Y (2015) Microwave-assisted synthesis of titania coating onto polymeric separators for improved lithium-ion battery performance. J Power Sources 286:526–533

    Article  CAS  Google Scholar 

  9. Zhang P, Chen L, Shi C, Yang P, Zhao J (2015) Development and characterization of silica tube-coated separator for lithium ion batteries. J Power Sources 284:10–15

    Article  CAS  Google Scholar 

  10. Kim M, Park JH (2012) Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li-ion battery. J Power Sources 212:22–27

    Article  CAS  Google Scholar 

  11. Yeon D, Lee Y, Ryou M, Lee Y (2015) New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries. Electrochim Acta 157:282–289

    Article  CAS  Google Scholar 

  12. Wang J, Hu Z, Yin X, Li Y, Huo H, Zhou J, Li L (2015) Alumina/phenolphthalein polyetherketone ceramic composite polypropylene separator film for lithium ion power batteries. Electrochim Acta 159:61–65

    Article  CAS  Google Scholar 

  13. Lee Y, Lee H, Lee T, Ryou M, Lee Y (2015) Synergistic thermal stabilization of ceramic/co-polyimide coated polypropylene separators for lithium-ion batteries. J Power Sources 294:537–544

    Article  CAS  Google Scholar 

  14. Choi J, Kim S, Kim D (2010) Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J Power Sources 195:6192–6196

    Article  CAS  Google Scholar 

  15. Park J, Cho J, Park W, Ryoo D, Yoon S, Kim J, Jeong Y, Lee S (2010) Close-packed SiO2/poly (methyl methacrylate) binary nanoparticles-coated polyethylene separators for lithium-ion batteries. J Power Sources 195:8306–8310

    Article  CAS  Google Scholar 

  16. Shi J, Xia Y, Yuan Z, Hu H, Li X, Zhang H, Liu Z (2015) Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery. Sci Reports 5:8255–8263

    Article  CAS  Google Scholar 

  17. Yang P, Zhang P, Shi C, Chen L, Dai J, Zhao J (2015) The functional separator coated with core–shell structured silica–poly (methyl methacrylate) sub-microspheres for lithium-ion batteries. J Memb Sci 474:148–155

    Article  CAS  Google Scholar 

  18. Xu RJ, Huang XR, Lin XG, Cao J, Yang JF, Lei CH (2017) The functional aqueous slurry coated separator using polyvinylidene fluoride powder particles for Lithium-ion batteries. J Electroanaly Chem 786:77–85

  19. Holtmann J, Schäfer M, Niemöller A, Winter M, Lex-Balducci A, Obeidi S (2016) Boehmite-based ceramic separator for lithium-ion batteries. J Appl Electrochem 46:69–76

    Article  CAS  Google Scholar 

  20. Zhai Y, Xiao K, Yu J, Yang J, Ding B (2015) Thermostable and nonflammable silica–polyetherimide–polyurethane nanofibrous separators for high power lithium ion batteries. J Mater Chem A 3:10551–10558

    Article  CAS  Google Scholar 

  21. Hassoun J, Verrelli R, Reale P, Paneroa S, Mariottob G, Greenbaumc S, Scrosatia B (2013) A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte. J Power Sources 229:117–122

    Article  CAS  Google Scholar 

  22. Zhang Z, Lai Y, Zhang Z, Zhang K, Li J (2014) Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim Acta 129:55–61

    Article  Google Scholar 

  23. Kim JH, Kim JH, Choi KH, Yu HK, Kim JH, Lee JS, Lee SY (2014) Inverse opal-inspired, nanoscaffold battery separators: a new membrane opportunity for high-performance energy storage system. Nano Lett 14:4438–4448

    Article  CAS  Google Scholar 

  24. Prasanth R, Aravindan V, Srinivasan M (2012) Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly (methyl methacrylate)/polystyrene for lithium ion batteries—preparation and electrochemical characterization. J Power Sources 202:299–307

    Article  CAS  Google Scholar 

  25. Zhang J, Yue L, Kong Q, Liu Z, Zhou X, Zhang C, Pang S, Wang X, Yao J, Cui G (2013) A heat-resistant silica nanoparticle enhanced polysulfonamide nonwoven separator for high-performance lithium ion battery. J Electrochemi Soc 160:A769–A774

    Article  CAS  Google Scholar 

  26. Hao J, Lei G, Li Z, Wu L, Xiao Q, Wang L (2013) A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery. J Memb Sci 428:11–16

    Article  CAS  Google Scholar 

  27. Raja M, Angulakshmi N, Thomas S, Kumar TP, Stephan A (2014) Thin, flexible and thermally stable ceramic membranes as separator for lithium-ion batteries. J. Memb Sci 471:103–109

    Article  CAS  Google Scholar 

  28. Lee J, Lee LC, Park K, Kim ID (2014) Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J. Power Sources 248:1211–1217

    Article  CAS  Google Scholar 

  29. Xiang HF, Chen JJ, Li Z, Wang HH (2011) An inorganic membrane as a separator for lithium-ion battery. J Power Sources 196:8651–8655

    Article  CAS  Google Scholar 

  30. Boukamp BA (1986) A package for impedance/admittance data analysis. Solid State Ionics 18:136–140

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Science Foundation of China under Grant No. 51603047, Guangdong Province Major Key Projects of Applied Research and Development of Science and Technology (2015B090925021), Guangdong Province Special Fund for Science and Technology Development (research and capacity building) (2016A010103030), GuangZhou Science and Technology Plan Project (201510010037), and PhD Start-up Fund of Natural Science Foundation of Guangdong Province, China (2016A030310344) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caihong Lei.

Electronic supplementary material

ESM 1

(DOCX 555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Lin, X., Huang, X. et al. Boehmite-coated microporous membrane for enhanced electrochemical performance and dimensional stability of lithium-ion batteries. J Solid State Electrochem 22, 739–747 (2018). https://doi.org/10.1007/s10008-017-3780-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3780-3

Keywords

Navigation