Skip to main content
Log in

Cyclic voltammetry and impedance spectroscopy analysis for graphene-modified solid-state electrode transducers

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The transducer of solid-state electrodes based on an epoxy-graphite composite was modified by two different methods, such as direct mixed and layer deposition of graphene (commercial and synthesized by electrochemical exfoliation of graphite). The modified electrodes were characterized by cyclic voltammetry and impedance spectroscopy. Also, scanning electron microscopy (SEM) was carried out to acquire information concerning the morphology of the composite electrode. Voltammetric measurements, in presence of [Fe(CN)6]3− as electroactive standard, determined a quasi-reversible electrochemical behavior under linear diffusion control. Electronic transference for modified and unmodified electrodes was compared. Solid-state electrode modified by inclusion of synthesized graphene showed a better electronic transference at electrode surface, due to the lower potential difference between anodic and cathodic peaks (ΔE = 125 mV) with respect to unmodified electrode (ΔE = 160 mV). Impedance spectroscopy characterization of electrode bodies in solid-state it was revealed a higher electronic conductivity and a supercapacitive behavior for the modified composites (values of intrinsic capacitances in the order of nanofarads) due to inclusions of graphite and graphene in the epoxy matrix. These inclusions were verified through SEM microscopy. The electronic conductivity and the supercapacitive character contributed both to the enhancement of electronic transference at electrode surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Freiser H (2012) In: Ion-selective electrodes in analytical chemistry. Springer Science & Business Media

  2. Guziński M, Lisak G, Kupis J, Jasiński A, Bocheńska M (2013) Anal Chim Acta 791:1–12

    Article  Google Scholar 

  3. Duarte K, Justino CI, Freitas AC, Gomes AM, Duarte AC, Rocha-Santos TA (2015) Trends Anal Chem 64:183–190

    Article  CAS  Google Scholar 

  4. Van de Velde L, D'Angremont E, Olthuis W (2016) Talanta 160:56–65

    Article  Google Scholar 

  5. Cattrall R, Freiser H (1971) Anal Chem 43:1905–1906

    Article  CAS  Google Scholar 

  6. Céspedes F, Martinez-Fabregas E, Alegret S (1996) Trends Anal Chem 15:296–304

    Article  Google Scholar 

  7. Santandreu M, Céspedes F, Alegret S, Martínez-Fàbregas E (1997) Anal Chem 69:2080–2085

    Article  CAS  Google Scholar 

  8. Villalba MM, Davis J (2008) J Solid State Electrochem 12:1245–1254

    Article  CAS  Google Scholar 

  9. Yuan Y, Zhang C, Wang C, Chen M (2015) J Solid State Electrochem 19:619–627

    Article  CAS  Google Scholar 

  10. Serradell M, Izquierdo S, Moreno L, Merkoçi A, Alegret S (2002) Electroanalysis 14:1281–1287

    Article  CAS  Google Scholar 

  11. Barsan MM, Pinto EM, Florescu M, Brett CM (2009) Anal Chim Acta 635:71–78

    Article  CAS  Google Scholar 

  12. Michalska A (2012) Electroanalysis 24:1253–1265

    Article  CAS  Google Scholar 

  13. Crespo GA, Macho S, Rius FX (2008) Anal Chem 80:1316–1322

    Article  CAS  Google Scholar 

  14. Guo J, Chai Y, Yuan R, Song Z, Zou Z (2011) Sensor Actuat B Chem 155:639–645

    Article  CAS  Google Scholar 

  15. Lai C-Z, Fierke MA, Stein A, Bühlmann P (2007) Anal Chem 79:4621–4626

    Article  CAS  Google Scholar 

  16. Fierke MA, Lai C-Z, Bühlmann P, Stein A (2009) Anal Chem 82:680–688

    Article  Google Scholar 

  17. Fouskaki M, Chaniotakis N (2008) Analyst 133:1072–1075

    Article  CAS  Google Scholar 

  18. Li J, Yin T, Qin W (2015) Anal Chim Acta 876:49–54

    Article  CAS  Google Scholar 

  19. Hernández R, Riu J, Bobacka J, Vallés C, Jiménez P, Benito AM, Maser WK, Rius FX (2012) J Phys Chem C 116:22570–22578

    Article  Google Scholar 

  20. Tong H, Zhu J, Chen J, Han Y, Yang S, Ding B, Zhang X (2013) J Solid State Electrochem 17:2857–2863

    Article  CAS  Google Scholar 

  21. Li S-J, Xing Y, Deng D-H, Shi M-M, Guan P-P (2015) J Solid State Electrochem 19:861–870

    Article  CAS  Google Scholar 

  22. Boeva ZA, Lindfors T (2016) Sensor Actuat B Chem 224:624–631

    Article  CAS  Google Scholar 

  23. Lazo AR, Bustamante M, Jimenez J, Arada MA, Yazdani-Pedram M (2006) J Chil Chem Soc 51:975–978

    Article  CAS  Google Scholar 

  24. Lazo Fraga AR, Calvo Quintana J, Li Destri G, Giamblanco N, Toro RG, Punzo F (2012) J Solid State Electrochem 16:901–909

    Article  CAS  Google Scholar 

  25. Lazo-Fraga AR, Vasconcelos-Pacheco A, Díaz-García A, Bustamante-Sánchez M, Estévez-Hernández O (2015) Rev Cuba Quím 27:262–274

    Google Scholar 

  26. Silva AL, Corrêa MM, de Oliveira GC, Florez-Rodriguez PP, Costa CAR, Semaan FS, Ponzio EA (2017) J Alloys Compd 691:220–229

    Article  CAS  Google Scholar 

  27. Su C-Y, Lu A-Y, Xu Y, Chen F-R, Khlobystov AN, Li L-J (2011) ACS Nano 5:2332–2339

    Article  CAS  Google Scholar 

  28. Lima JL, Machado AA (1986) Analyst 111:799–802

    Article  CAS  Google Scholar 

  29. Holze R, Zanello P (2006) J Solid State Electrochem 10:512–513

    Article  CAS  Google Scholar 

  30. Muñoz J, Brennan LJ, Céspedes F, Gun'ko YK, Baeza M (2016) Compos Sci Technol 125:71–79

    Article  Google Scholar 

  31. Pan M, Zhang C, Liu B, Mu J (2013) J Mater Sci Res 2:153–162

    CAS  Google Scholar 

  32. Khanam PN, Ponnamma D, AL-Madeed M (2015) In: Graphene-Based Polymer Nanocomposites in Electronics. Springer

Download references

Acknowledgments

The authors wish to thank the CECITI-CLAF Academic Exchange and Development Program for Latin America, Central America, and the Caribbean for the financial support. The authors are also grateful to the Third World Academy of Sciences (RG / PHYS / LA 99-050, 02-225, and 05-043) and CIFT, Trieste-Italia, for financial support to the Latin American Network of Ferroelectric Materials (NET-43, currently NT-02). This work is part of the Cuban National Project (PNCB-80-UH-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana R. Lazo Fraga.

Electronic supplementary material

ESM 1

(DOCX 487 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portales, M.V., Lazo Fraga, A.R., Díaz García, A.M. et al. Cyclic voltammetry and impedance spectroscopy analysis for graphene-modified solid-state electrode transducers. J Solid State Electrochem 22, 471–478 (2018). https://doi.org/10.1007/s10008-017-3776-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3776-z

Keywords

Navigation