Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1539–1548 | Cite as

The iron oxyhydroxide role in the mediation of charge transfer for water splitting using bismuth vanadate photoanodes

  • Moisés A. de Araújo
  • Dyovani Coelho
  • Lucia H. Mascaro
  • Ernesto C. Pereira
Original Paper


The water photo-oxidation to oxygen on iron oxyhydroxide (FeOOH) deposited on a surface of semiconductor materials play a crucial role in the enhancement of different devices. In order to investigate how FeOOH works to produce O2 from water splitting, we have investigated the role of a deposited layer of FeOOH on the bismuth vanadate (BiVO4) films. The simple-modified method based on polyethylene glycol was applied to produce BiVO4 nanostructures and a FeOOH photoelectrodeposition methodology was used to cover the BiVO4 film surface. The photoelectrochemistry study for FeOOH modified BiVO4 revealed a 3.4 times increase in the photocurrent at 1.23 V vs. RHE. A possible explanation to the FeOOH mechanism is that it is actually a green rust containing a mixture of Fe (II) and Fe (III) that acts as center of charge transfer mediation and not as a catalyst itself. This hypothesis has been supported by a change absence in the onset potential, no photocurrent saturation, and no change in the charge carrier density. Moreover, the FeOOH also passivated the surface states of BiVO4 as the open circuit potential shifted 70 mV vs. RHE to more positive potentials.

Graphical abstract


Bismuth vanadate Iron oxyhydroxide Water splitting Hydrogen Energy Photoelectrochemical cell 



This work was supported by São Paulo Research Foundation (CEPID/FAPESP process 2013/07296-2, grant 2016/12681-0), the National Council of Technological and Scientific Development (CNPq, grants for M.A. de Araújo and D. Coelho), and the Coordination for the Improvement of Higher Education Personnel (CAPES, grant PNPD for D. Coelho).


  1. 1.
    Fushima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  2. 2.
    da Silva MR, Lucilha AC, Afonso R, Dall’Antonia LH, Scalvi LVD (2014) Photoelectrochemical properties of FTO/m-BiVO4 electrode in different electrolytes solutions under visible light irradiation. Ionics 20(1):105–113CrossRefGoogle Scholar
  3. 3.
    Xu J, Wang WZ, Wang J, Liang YJ (2015) Controlled fabrication and enhanced photocatalystic performance of BiVO4@CeO2 hollow microspheres for the visible-light-driven degradation of rhodamine B. Appl Surf Sci 349:529–537CrossRefGoogle Scholar
  4. 4.
    Obregon S, Colon G (2015) On the origin of the photocatalytic activity improvement of BIVO4 through rare earth tridoping. Appl Catal a-Gen 501:56–62CrossRefGoogle Scholar
  5. 5.
    Chen L, Alarcon-Llado E, Hettick M, Sharp ID, Lin YJ, Javey A, Ager JW (2013) Reactive sputtering of bismuth vanadate photoanodes for solar water splitting. J Phys Chem C 117(42):21635–21642CrossRefGoogle Scholar
  6. 6.
    Cho SK, Park HS, Lee HC, Nam KM, Bard AJ (2013) Metal Doping of BiVO4 by composite electrodeposition with improved photoelectrochemical water oxidation. J Phys Chem C 117(44):23048–23056CrossRefGoogle Scholar
  7. 7.
    Choi SK, Choi W, Park H (2013) Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Phys Chem Chem Phys 15(17):6499–6507CrossRefGoogle Scholar
  8. 8.
    Luo WJ, Li ZS, Yu T, Zou ZG (2012) Effects of surface electrochemical pretreatment on the photoelectrochemical performance of Mo-doped BiVO4. J Phys Chem C 116(8):5076–5081CrossRefGoogle Scholar
  9. 9.
    Pilli SK, Furtak TE, Brown LD, Deutsch TG, Turner JA, Herring AM (2011) Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ Sci 4(12):5028–5034CrossRefGoogle Scholar
  10. 10.
    Guo F, Shi WL, Lin X, Che GB (2014) Hydrothermal synthesis of graphitic carbon nitride-BiVO4 composites with enhanced visible light photocatalytic activities and the mechanism study. J Phys Chem Solids 75(11):1217–1222CrossRefGoogle Scholar
  11. 11.
    Lei BX, Zhang P, Wang SN, Li Y, Huang GL, Sun ZF (2015) Additive-free hydrothermal synthesis of novel bismuth vanadium oxide dendritic structures as highly efficient visible-light photocatalysts. Mat Sci Semicon Proc 30:429–434CrossRefGoogle Scholar
  12. 12.
    Liu X, Liu Y, Su JZ, Li MT, Guo LJ (2015) Facile preparation of BiVO4 nanoparticle film by electrostatic spray pyrolysis for photoelectrochemical water splitting. Int J Hydrogen Energ 40(38):12964–12972CrossRefGoogle Scholar
  13. 13.
    Liang ZT, Cao YL, Qin HY, Jia DZ (2016) Low-heating solid-state chemical synthesis of monoclinic scheelite BiVO4 with different morphologies and their enhanced photocatalytic property under visible light. Mater Res Bull 84:397–402CrossRefGoogle Scholar
  14. 14.
    Ravidhas C, Josephine AJ, Sudhagar P, Devadoss A, Terashima C, Nakata K, Fujishima A, Raj AME, Sanjeeviraja C (2015) Facile synthesis of nanostructured monoclinic bismuth vanadate by a co-precipitation method: structural, optical and photocatalytic properties. Mat Sci Semicon Proc 30:343–351CrossRefGoogle Scholar
  15. 15.
    Alarcon-Llado E, Chen L, Hettick M, Mashouf N, Lin YJ, Javey A, Ager JW (2014) BiVO4 thin film photoanodes grown by chemical vapor deposition. Phys Chem Chem Phys 16(4):1651–1657CrossRefGoogle Scholar
  16. 16.
    Mascaro LH, Pockett A, Mitchels JM, Peter LM, Cameron PJ, Celorrio V, Fermin DJ, Sagu JS, Wijayantha KGU, Kociok-Kohn G, Marken F (2015) One-step preparation of the BiVO4 film photoelectrode. J Solid State Electr 19(1):31–35CrossRefGoogle Scholar
  17. 17.
    Eda S, Fujishima M, Tada H (2012) Low temperature-synthesis of BiVO4 nanorods using polyethylene glycol as a soft template and the visible-light-activity for copper acetylacetonate decomposition. Appl Catal B-Environ 125:288–293CrossRefGoogle Scholar
  18. 18.
    He HC, Berglund SP, Rettie AJE, Chemelewski WD, Xiao P, Zhang YH, Mullins CB (2014) Synthesis of BiVO4 nanoflake array films for photoelectrochemical water oxidation. J Mater Chem A 2(24):9371–9379CrossRefGoogle Scholar
  19. 19.
    Zhou B, Qu JH, Zhao X, Liu HJ (2011) Fabrication and photoelectrocatalytic properties of nanocrystalline monoclinic BiVO4 thin-film electrode. J Environ Sci-China 23(1):151–159CrossRefGoogle Scholar
  20. 20.
    Wang DE, Li RG, Zhu J, Shi JY, Han JF, Zong X, Li C (2012) Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: essential relations between electrocatalyst and photocatalyst. J Phys Chem C 116(8):5082–5089CrossRefGoogle Scholar
  21. 21.
    Abdi FF, van de Krol R (2012) Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes. J Phys Chem C 116(17):9398–9404CrossRefGoogle Scholar
  22. 22.
    Luo WJ, Yang ZS, Li ZS, Zhang JY, Liu JG, Zhao ZY, Wang ZQ, Yan SC, Yu T, Zou ZG (2011) Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ Sci 4(10):4046–4051CrossRefGoogle Scholar
  23. 23.
    Kim JH, Jang JW, Kang HJ, Magesh G, Kim JY, Kim JH, Lee J, Lee JS (2014) Palladium oxide as a novel oxygen evolution catalyst on BiVO4 photoanode for photoelectrochemical water splitting. J Catal 317:126–134CrossRefGoogle Scholar
  24. 24.
    Kim TW, Choi KS (2014) Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343(6174):990–994CrossRefGoogle Scholar
  25. 25.
    Seabold JA, Choi KS (2012) Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J Am Chem Soc 134(4):2186–2192CrossRefGoogle Scholar
  26. 26.
    Park Y, Kang D, Choi KS (2014) Marked enhancement in electron-hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO4 photoanodes. Phys Chem Chem Phys 16(3):1238–1246CrossRefGoogle Scholar
  27. 27.
    McDonald KJ, Choi KS (2012) A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ Sci 5(9):8553–8557CrossRefGoogle Scholar
  28. 28.
    Chen L, Toma FM, Cooper JK, Lyon A, Lin YJ, Sharp ID, Ager JW (2015) Mo-Doped BiVO4 photoanodes synthesized by reactive sputtering. ChemSusChem 8(6):1066–1071CrossRefGoogle Scholar
  29. 29.
    Kim JY, Youn DH, Kang K, Lee JS (2016) Highly conformal deposition of an ultrathin FeOOH layer on a hematite nanostructure for efficient solar water splitting. Angew Chem Int Edit 55(36):10854–10858CrossRefGoogle Scholar
  30. 30.
    Ishihara H, Kannarpady GK, Khedir KR, Woo J, Trigwell S, Biris AS (2011) A novel tungsten trioxide (WO3)/ITO porous nanocomposite for enhanced photo-catalytic water splitting. Phys Chem Chem Phys 13:19553–19560CrossRefGoogle Scholar
  31. 31.
    Ren K, Gan YX, Nikolaidis E, Sofyani SA, Zhang L (2013) Electrolyte concentration effect of a photoelectrochemical cell consisting of TiO2 nanotubes anode. ISRN Materials Science 2013:682516CrossRefGoogle Scholar
  32. 32.
    Hill JC, Choi KS (2012) Effect of electrolytes on the selectivity and stability of n-type WO3 photoelectrodes for use in solar water oxidation. J Phys Chem C 116:7612–7620CrossRefGoogle Scholar
  33. 33.
    Monfort O, Pop L-C, Sfaelou S, Plecenik T, Roch T, Dracopoulos V, Stathatos E, Plesch G, Lianos P (2016) Photoelectrocatalytic hydrogen production by water splitting using BiVO4 photoanodes. Chem Eng J 286:91–97CrossRefGoogle Scholar
  34. 34.
    Luo WJ, Wang ZQ, Wan LJ, Li ZS, Yu T, Zou ZG (2010) Synthesis, growth mechanism and photoelectrochemical properties of BiVO4 microcrystal electrodes. J Phys D Appl Phys 43(40):405402CrossRefGoogle Scholar
  35. 35.
    Bolzan AA, Fong C, Kennedy BJ, Howard CJ (1997) Structural studies of rutile-type metal dioxides. Acta Crystallogr B 53:373–380CrossRefGoogle Scholar
  36. 36.
    Noyan IC, Huang TC, York BR (1995) Residual stress/strain snalysis in thin films by X-ray diffraction. Crit Rev Solid State 20(2):125–177CrossRefGoogle Scholar
  37. 37.
    Kim TW, Choi KS (2016) Improving stability and photoelectrochemical performance of BiVO4 photoanodes in basic media by adding a ZnFe2O4 layer. J Phys Chem Lett 7(3):447–451CrossRefGoogle Scholar
  38. 38.
    Nowak M, Kauch B, Szperlich P (2009) Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev Sci Instrum 80(4):046107CrossRefGoogle Scholar
  39. 39.
    Seabold JA, Zhu K, Neale NR (2014) Efficient solar photoelectrolysis by nanoporous Mo: BiVO4 through controlled electron transport. Phys Chem Chem Phys 16(3):1121–1131CrossRefGoogle Scholar
  40. 40.
    Chemelewski WD, Lee HC, Lin JF, Bard AJ, Mullins CB (2014) Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J Am Chem Soc 136(7):2843–2850CrossRefGoogle Scholar
  41. 41.
    Genin JMR, Olowe AA, Refait P, Simon L (1996) On the stoichiometry and Pourbaix diagram of Fe (II)-Fe (III) hydroxy-sulphate or sulphate-containing green rust 2: an electrochemical and Mossbauer spectroscopy study. Corros Sci 38(10):1751–1762CrossRefGoogle Scholar
  42. 42.
    Refait P, Drissi SH, Pytkiewicz J, Genin JMR (1997) The anionic species competition in iron aqueous corrosion: role of various green rust compounds. Corros Sci 39(9):1699–1710CrossRefGoogle Scholar
  43. 43.
    Sarkar S, Chattopadhyay KK (2012) Size-dependent optical and dielectric properties of BiVO4 nanocrystals. Phys E 44(7–8):1742–1746CrossRefGoogle Scholar
  44. 44.
    Finklea HO (1988) Studies in physical and theoretical chemistry. In: Semiconductor electrodes, vol 55. Elsevier, AmsterdamGoogle Scholar
  45. 45.
    Liu CJ, Li J, Li YM, Li WZ, Yang YH, Chen QY (2015) Epitaxial growth of Bi2S3 nanowires on BiVO4 nanostructures for enhancing photoelectrochemical performance. RSC Adv 5(88):71692–71698CrossRefGoogle Scholar
  46. 46.
    Hong SJ, Lee S, Jang JS, Lee JS (2011) Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci 4(5):1781–1787CrossRefGoogle Scholar
  47. 47.
    Ding CM, Shi JY, Wang DG, Wang ZJ, Wang N, Liu GJ, Xiong FQ, Li C (2013) Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias. Phys Chem Chem Phys 15(13):4589–4595CrossRefGoogle Scholar
  48. 48.
    Lin FD, Boettcher SW (2014) Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat Mater 13(1):81–86CrossRefGoogle Scholar
  49. 49.
    Jia QX, Iwashina K, Kudo A (2012) Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. P Natl Acad Sci USA 109(29):11564–11569CrossRefGoogle Scholar
  50. 50.
    Zaharieva I, Chernev P, Risch M, Klingan K, Kohlhoff M, Fischer A, Dau H (2012) Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide. Energy Environ Sci 5(5):7081–7089CrossRefGoogle Scholar
  51. 51.
    Nam KM, Cheon EA, Shin WJ, Bard AJ (2015) Improved photoelectrochemical water oxidation by the WO3/CuWO4 composite with a manganese phosphate electrocatalyst. Langmuir 31(39):10897–10903CrossRefGoogle Scholar
  52. 52.
    Abdi FF, Firet N, van de Krol R (2013) Efficient BiVO4 thin film photoanodes modified with Cobalt Phosphate catalyst and W-doping. ChemCatChem 5(2):490–496CrossRefGoogle Scholar
  53. 53.
    Roger I, Symes MD (2016) First row transition metal catalysts for solar-driven water oxidation produced by electrodeposition. J Mater Chem A 4(18):6724–6741CrossRefGoogle Scholar
  54. 54.
    Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075CrossRefGoogle Scholar
  55. 55.
    Gromboni MF, Coelho D, Mascaro LH, Pockett A, Marken F (2017) Enhancing activity in a nanostructured BiVO4 photoanode with a coating of microporous Al2O3. Appl Catal B Environ 200:133–140CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Moisés A. de Araújo
    • 1
  • Dyovani Coelho
    • 1
  • Lucia H. Mascaro
    • 1
  • Ernesto C. Pereira
    • 1
  1. 1.Department of ChemistryFederal University of São CarlosSão CarlosBrazil

Personalised recommendations