Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1385–1394 | Cite as

Electrochemical sensor for detection of imipramine antidepressant at low potential based on oxidized carbon nanotubes, ferrocenecarboxylic acid, and cyclodextrin: application in psychotropic drugs and urine samples

  • Antônio Gomes dos Santos Neto
  • Camila Silva de Sousa
  • André da Silva Freires
  • Saimon Moraes Silva
  • Hudson Zanin
  • Flavio Santos Damos
  • Rita de Cássia Silva LuzEmail author
Original Paper


Imipramine (IMP), a tricyclic antidepressant drug, is commonly prescribed for treatment of psychiatric patients suffering from different forms of depression. The appropriate amount of drug intake is crucial to ensure the optimum therapeutic effects minimizing severe collateral effects and toxicity. Therefore, the monitoring of imipramine is essential for its clinical applications. Herein, we report an electrochemical sensor based on a composite of ferrocenecarboxylic acid (FCA), β-cyclodextrin (CD), and oxidized multi-walled carbon nanotubes (f-CNT) modified glassy carbon electrode for detection of IMP at low potential. The electrochemical behavior of the proposed sensor was characterized by scanning electron microscopy, Raman spectroscopy, and cyclic voltammetry. The results show that imipramine determination using the proposed sensor occurs around 0 V vs Ag/AgCl in phosphate buffer pH 7.0. The calibration curves were obtained by cyclic voltammetry and differential pulse voltammetry, with linear ranges of 10 to 350 μmol L−1 and 0.1 to 10 μmol L−1, respectively. A detection limit of 0.03 μmol L−1 was obtained for the detection of IMP. The sensor was applied for IMP determination in psychotropic drugs and urine samples and the results show a recovery percentage between 99 and 101% for the analyte.


Antidepressant Imipramine Electrochemical sensor Ferrocenecarboxylic acid Oxidized carbon nanotubes 


Funding information

The authors are grateful to CNPq (303525/2016-9, 305680/2015-3, 301486/2016-6, and 401689/2015-8), INCT-Bioanalítica (465389/2014-7), FAPEMA (Universal 00927/2016 and PRONEM 210383/2016), and FAPESP (2014/02163-7) for financial support. AGSN, CSS, and SMS are scholarship students from CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Supplementary material

10008_2017_3772_MOESM1_ESM.docx (221 kb)
ESM 1 (DOCX 220 kb)


  1. 1.
    Aksoy A, Erduran E, Gedik Y (2009) A case of imipramine-associated immune thrombocytopenia. Turkish J Pediatr 51:275–278Google Scholar
  2. 2.
    Kerr GW, McGuffie AC, Wilkie S (2001) Tricyclic antidepressant overdose: a review. Emerg Med J 18:236–241CrossRefGoogle Scholar
  3. 3.
    Soni P, Sar SK, Kamavisdar A, Patel R (2011) Simple and sensitive spectrophotometric method for determination of tricyclic antidepressant imipramine using Fe(III)-SCN-complex. J Anal Chem 66:596–599CrossRefGoogle Scholar
  4. 4.
    Yoshida H, Hidaka K, Ishida J, Yoshikuni K, Nohta H, Yamaguchi M (2000) Highly selective and sensitive determination of tricyclic antidepressants in human plasma using high-performance liquid chromatography with post-column tris(2,2’-bipyridyl) ruthenium(III) chemiluminescence detection. Anal Chim Acta 413:137–145CrossRefGoogle Scholar
  5. 5.
    Bose D, Martinavarro-Dominguez A, Gil-Agusti M, Carda-Broch S, Durgbanshi A, Capella-Peiro ME, Esteve-Romero J (2005) Therapeutic monitoring of imipramine and desipramine by micellar liquid chromatography with direct injection and electrochemical detection. Biomed Chromatogr 19:343–349CrossRefGoogle Scholar
  6. 6.
    Lin CN, Juenke JM, Johnson-Davis KL (2014) Method validation of a tricyclic antidepressant drug panel in urine by UPLC-MS/MS. Ann Clin Lab Sci 44:431–436Google Scholar
  7. 7.
    Varley CK, McClellan J (1997) Case study: two additional sudden deaths with tricyclic antidepressants. J Am Acad Child Psychiatry 36:390–394CrossRefGoogle Scholar
  8. 8.
    Melanson SE, Lewandrowski EL, Griggs DA, Flood JG (2007) Interpreting tricyclic antidepressant measurements in urine in an mergency department setting: comparison of two qualitative point-of-care urine tricyclic antidepressant drug immunoassays with quantitative serum chromatographic analysis. J Anal Toxicol 31:270–275CrossRefGoogle Scholar
  9. 9.
    Zhao J, Shin Y, Chun K-H, Yoon HR, Lee J (2016) A simple, rapid and reliable method to determine imipramine and desipramine in mouse serum using ultra-high-performance liquid chromatography–quadrupole-time-of-flight mass spectrometry. J Chromatogr Sci 54:561–568CrossRefGoogle Scholar
  10. 10.
    Shamsipur M, Mirmohammadi M (2014) High performance liquid chromatographic determination of ultratraces of two tricyclic antidepressant drugs imipramine and trimipramine in urine samples after their dispersive liquid–liquid microextraction coupled with response surface optimization. J Pharm Biomed Anal 100:271–278CrossRefGoogle Scholar
  11. 11.
    Sasajima Y, Lim LW, Takeuchi T, Suenami K, Sato K, Takekoshi Y (2010) Simultaneous determination of antidepressants by non-aqueous capillary electrophoresis-time of flight mass spectrometry. J Chromatogr A 1217:7598–7604CrossRefGoogle Scholar
  12. 12.
    Yu C, Hongwei D, You T (2011) Determination of imipramine and trimipramine by capillary electrophoresis with electrochemiluminescence detection. Talanta 83:1376–1380CrossRefGoogle Scholar
  13. 13.
    Flores JR, Nevado JJB, Salcedo AMC, Díaz MPC (2005) Nonaqueous capillary electrophoresis method for the analysis of tamoxifen, imipramine and their main metabolites in urine. Talanta 65:155–162CrossRefGoogle Scholar
  14. 14.
    El Zeany BS, Moustafa AA, Farid NF (2003) Determination of imipramine in presence of iminodibenzyl and in pharmaceutical dosage form. J Pharm Biomed Anal 33:775–782CrossRefGoogle Scholar
  15. 15.
    Starczewska B (2000) Spectrophotometric studies and application of imipramine–eriochrome cyanine R system for determination of imipramine in pharmaceuticals. J Pharm Biomed Anal 23:383–386CrossRefGoogle Scholar
  16. 16.
    Misiuk W (2000) Spectrophotometry assay of imipramine and desipramine using ammonium metavanadate and its application to pharmaceutical preparations. J Pharm Biomed Anal 22:189–196CrossRefGoogle Scholar
  17. 17.
    Pommier F, Sioufi A, Godbillon J (1997) Simultaneous determination of imipramine and its metabolite desipramine in human plasma by capillary gas chromatography with mass-selective detection. J Chromatogr B Biomed Sci Appl 703:147–158CrossRefGoogle Scholar
  18. 18.
    Xu R, Lee HK (2014) Application of electro-enhanced solid phase microextraction combined with gas chromatography–mass spectrometry for the determination of tricyclic antidepressants in environmental water samples. J Chromatogr A1350:15–22CrossRefGoogle Scholar
  19. 19.
    Oliveira SN, Ribeiro FWP, Sousa CP, Soares JES, Suffredini HBS, Becker H, Lima-Neto P, Correia NA (2017) Imipramine sensing in pharmaceutical formulations using boron-doped diamond electrode. J Electroanal Chem 788:118–124CrossRefGoogle Scholar
  20. 20.
    Ferancová A, Korgová E, Mikó R, Labuda J (2000) Determination of tricyclic antidepressants using a carbon paste electrode modified with β-cyclodextrin. J Electroanal Chem 492:74–77CrossRefGoogle Scholar
  21. 21.
    Oliveira AX, Silva SM, Leite FRF, Kubota LT, Damos FS, Luz RCS (2013) Highly sensitive and selective basal plane pyrolytic graphite electrode modified with 1, 4-naphthoquinone/MWCNT for simultaneous determination of dopamine, ascorbate and urate. Electroanalysis 25:723–731CrossRefGoogle Scholar
  22. 22.
    Ribeiro IAL, Yotsumoto-Neto S, dos Santos WT, Fernandes RN, Goulart MO, Damos FS, Luz RCS (2017) Improved NADH electroanalysis on nickel (II) phthalocyanine tetrasulfonic acid/calf thymus deoxyribonucleic acid/reduced graphene oxide composite. J Braz Chem Soc 28:1768–1778Google Scholar
  23. 23.
    Silva SM, Oliveira FM, Justino DD, Kubota LT, Tanaka AA, Damos FS, Luz RCS (2014) A novel sensor based on manganese azo-macrocycle/carbon nanotubes to perform the oxidation and reduction processes of two diphenol isomers. Electroanalysis 26:602–611CrossRefGoogle Scholar
  24. 24.
    Xu X, Zhou G, Li H, Liu Q, Zhang S, Kong J (2009) A novel molecularly imprinted sensor for selectively probing imipramine created on ITO electrodes modified by Au nanoparticles. Talanta 78:26–32CrossRefGoogle Scholar
  25. 25.
    Safavi A, Banazadeh A, Sedaghati F (2013) Synthesis of palladium nanoparticles on organically modified silica: application to design of a solid-state electrochemiluminescence sensor for highly sensitive determination of imipramine. Anal Chim Acta 796:115–121CrossRefGoogle Scholar
  26. 26.
    Jankowska-Śliwińska J, Dawgul M, Pijanowska DG (2015) DNA-based electrochemical biosensor for imipramine detection. Procedia Eng 120:574–577CrossRefGoogle Scholar
  27. 27.
    Norouzi P, Ganjali MR, Akbari-Adergani B (2006) Sub-second FFT continuous tripping cyclic voltammetric technique as a novel method for pico-level monitoring of imipramine at Au microelectrode in flowing solutions. Acta Chim Slov 53:499–505Google Scholar
  28. 28.
    Eslami E, Farjami F, Aberoomand AP, Saber TM (2014) Adsorptive stripping voltammetric determination of imipramine and amitriptiline at a nanoclay composite carbon ionic liquid electrode. Electroanalysis 26:424–431CrossRefGoogle Scholar
  29. 29.
    Ivandini TA, Sarada BV, Terashima C, Rao TN, Tryk DA, Ishiguro H, Fujishima A (2002) Electrochemical detection of tricyclic antidepressant drugs by HPLC using highly boron-doped diamond electrodes. J Electroanal Chem 521:117–126CrossRefGoogle Scholar
  30. 30.
    de Toledo RA, Santos MC, Shim H, Mazo LH (2015) Electroanalytical determination of imipramine in reconstituted serum with a graphite-polyurethane composite electrode. Int J Electrochem Sci 10:6975–6985Google Scholar
  31. 31.
    Sanghavi BJ, Srivastava AK (2013) Adsorptive stripping voltammetric determination of imipramine, trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode. Analyst 138:1395–1404CrossRefGoogle Scholar
  32. 32.
    Guorong Z, Xiaolei W, Xingwang S, Tianling S (2000) β-Cyclodextrin–ferrocene inclusion complex modified carbon paste electrode for amperometric determination of ascorbic acid. Talanta 51:1019–1025CrossRefGoogle Scholar
  33. 33.
    Zanin H, May PW, Lobo AO, Saito E, Machado JPB, Martins G, Corat EJ (2014) Effect of multi-walled carbon nanotubes incorporation on the structure, optical and electrochemical properties of diamond-like carbon thin films. J Electrochem Soc 161:H290–H295CrossRefGoogle Scholar
  34. 34.
    Zanin H, Margraf-Ferreira A, Da Silva NS, Marciano FR, Corat EJ, Lobo AO (2014) Graphene and carbon nanotube composite enabling a new prospective treatment for trichomoniasis disease. Mater Sci Eng C 41:65–69CrossRefGoogle Scholar
  35. 35.
    Moreira JVS, Corat EJ, May PW, Cardoso LDR, Lelis PA, Zanin H (2016) Freestanding aligned multi-walled carbon nanotubes for supercapacitor devices. J Electron Mater 45:5781–5788CrossRefGoogle Scholar
  36. 36.
    Spinola RF, Zanin H, Macena CS, Contin A, Luz RCS, Damos FS (2017) Evaluation of a novel composite based on functionalized multi-walled carbon nanotube and iron phthalocyanine for electroanalytical determination of isoniazid. J Solid State Electrochem 21:1089–1099CrossRefGoogle Scholar
  37. 37.
    Antunes EF, Lobo AO, Corat EJ, Trava-Airoldi VJ, Martin AA, Verissimo C (2006) Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation. Carbon 44:2202–2211CrossRefGoogle Scholar
  38. 38.
    Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2006) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758CrossRefGoogle Scholar
  39. 39.
    Chen L, Song Y, Hu P, Deming CP, Guo Y, Chen S (2014) Interfacial reactivity of ruthenium nanoparticles protected by ferrocenecarboxylates. Phys Chem Chem Phys 16:18736–18742CrossRefGoogle Scholar
  40. 40.
    Qiu J-D, Zhou W-M, Guo J, Wang R, Liang R-P (2009) Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Anal Biochem 385:264–269CrossRefGoogle Scholar
  41. 41.
    Guan L, Shi Z, Li M, Gu Z (2005) Ferrocene-filled single-walled carbon nanotubes. Carbon 43:2780–2785CrossRefGoogle Scholar
  42. 42.
    Egyed O, Weiszfeiler V (1994) Structure determination of copper(II)-β-cyclodextrin complex by Fourier transform infrared spectroscopy. Vib Spectrosc 7:73–77CrossRefGoogle Scholar
  43. 43.
    Rojas-Mena AR, López-González H, Rojas-Hernández A (2015) Preparation and characterization of holmium-beta-cyclodextrin complex. Adv Mater Phys Chem 5:87–94CrossRefGoogle Scholar
  44. 44.
    Egyed O (1990) Spectroscopic studies on β-cyclodextrin. Vib Spectrosc 1:225–227CrossRefGoogle Scholar
  45. 45.
    Chambers G, Carroll C, Farrell GF, Dalton AB, McNamara M, Panhuis M, Byrne HJ (2003) Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes. Nano Lett 3:843–846CrossRefGoogle Scholar
  46. 46.
    Chen J, Dyer MJ, Yu MF (2001) Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. J Am Chem Soc 123:6201–6202CrossRefGoogle Scholar
  47. 47.
    Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101:19–28CrossRefGoogle Scholar
  48. 48.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley & SonsGoogle Scholar
  49. 49.
    Nurzulaikha R, Lim HN, Harrison I, Lim SS, Pandikumar A, Huang NM, Ibrahim I (2015) Graphene/SnO2 nanocomposite-modified electrode for electrochemical detection of dopamine. Sens Biosensing Res 5:42–49CrossRefGoogle Scholar
  50. 50.
    Gowda JI, Nandibewoor ST (2014) Electrochemical behavior of paclitaxel and its determination at glassy carbon electrode. Asian J Pharmacol 9:42–49Google Scholar
  51. 51.
    Arduini F, Cassisi A, Amine A, Ricci F, Moscone D, Palleschi G (2009) Electrocatalytic oxidation of thiocholine at chemically modified cobalt hexacyanoferrate screen-printed electrodes. J Electroanal Chem 626:66–74CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Antônio Gomes dos Santos Neto
    • 1
  • Camila Silva de Sousa
    • 1
  • André da Silva Freires
    • 1
  • Saimon Moraes Silva
    • 2
  • Hudson Zanin
    • 3
  • Flavio Santos Damos
    • 1
  • Rita de Cássia Silva Luz
    • 1
    Email author
  1. 1.Laboratory of Sensors, Devices and Analytical Methods, Department of ChemistryFederal University of Maranhão, UFMASão LuísBrazil
  2. 2.School of Chemistry, Australian Centre for NanoMedicine, and the ARC Centre of Excellence in Convergent Bio-Nano Science and TechnologyThe University of New South WalesSydneyAustralia
  3. 3.Carbon Sci-Tech Labs, School of Electrical and Computer EngineeringUniversity of CampinasCampinasBrazil

Personalised recommendations