Skip to main content

Advertisement

Log in

Intensified electrochemical hydrogen storage capacity of multi-walled carbon nanotubes supported with Ni nanoparticles

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical hydrogen storage properties of Ni-supported multi-walled carbon nanotube (Ni/MWCNT) electrodes were investigated using charge/discharge (C&D) and cyclic voltammetry (CV) techniques. Nickel NPs were deposited on the MWCNT surface, which was first chemically oxidized by H2SO4 and HNO3 (3:1, v/v). Hydrogen storage was carried out by using the Ni/MWCNT electrode as the working electrode in the electrochemical cell. A set of various current densities were applied to the cell to produce (C&D) cycles, and it became optimum corresponding to 1.5 mA current. According to the electrochemical test results, the highest electrochemical discharge capacity of 1625 mAh g−1 was obtained for the electrode with ratio of 4:1 (MWCNTs to Ni) in the initial cycle, which corresponded to 6.07 wt% H2. The storage capacity was increased and reached to 4909 mAh g−1 (18.34 wt% H2) after 20 cycles, and the electrode maintained the specific capacity as cycling continued. Thus, the Ni/MWCNT electrode displays an excellent cycle stability and a high capacity reversibility. CV measurements also showed that the electrochemical adsorption and desorption amount of hydrogen was increased by Ni loading onto the CNTs and indicated that the electrochemical hydrogen adsorption of the electrode has an activated period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang Z, Shi Z, Gu Z (2010) Synthesis of single-walled carbon nanotube/metal nanoparticle hybrid materials from potassium-filled nanotubes. Carbon 48:443–446

    Article  CAS  Google Scholar 

  2. Ao ZM, Peeters FM (2010) High-capacity hydrogen storage in Aladsorbed graphene. Phys Rev B 81:205406

    Article  Google Scholar 

  3. Shevlin SA, Guo ZX (2009) Density functional theory simulations of complex hydride and carbon-based hydrogen storage materials. Chem Soc Rev 38:211–225

    Article  CAS  Google Scholar 

  4. Reyhani A, Mortazavi SZ, Mirershadi S, Nozad Golikand A, Moshfegh AZ (2012) H2 adsorption mechanism in Mg modified multi-walled carbon nanotubes for hydrogen storage. Int J Hydrogen Energy 37:1919–1926

    Article  CAS  Google Scholar 

  5. Li M, Li Y, Zhou Z, Shen P, Chen Z (2009) Ca-coated boron fullerenes and nanotubes as superior hydrogen storage materials. Nano Lett 9:1944–1948

    Article  CAS  Google Scholar 

  6. Kim BJ, Park SJ (2007) Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons. J Colloid Interface Sci 311:619–621

    Article  CAS  Google Scholar 

  7. Choi M-H, Min Y-J, Gwak G-H, Paek S-M, Oh J-M (2014) A nanostructured Ni/graphene hybrid for enhanced electrochemical hydrogen storage. J Alloys Compd 610:231–235

    Article  CAS  Google Scholar 

  8. Mortazavi SZ, Parvin P, Reyhani A, Malekfar R, Mirershadi S (2013) Hydrogen storage property of laser induced Pd-nanoparticle decorated multi-walled carbon nanotubes. RSC Adv 3:1397–1409

    Article  CAS  Google Scholar 

  9. Mosquera E, Diaz-Droguett DE, Carvajal N, Roble M, Morela M, Espinoza R (2014) Characterization and hydrogen storage in multi-walled carbon nanotubes grown by aerosol-assisted CVD method. Diam Relat Mater 43:66–71

    Article  CAS  Google Scholar 

  10. Jiang H, Feng Y, Chen M, Wang Y (2013) Synthesis and hydrogen-storage performance of interpenetrated MOF-5/MWCNTs hybrid composite with high mesoporosity. Int J Hydrogen Energy 38:10950–10955

    Article  CAS  Google Scholar 

  11. Im JS, Kang SC, Bai BC, Suh J-K, Lee Y-S (2011) Effect of thermal fluorination on the hydrogen storage capacity of multi-walled carbon nanotubes. Int J Hydrogen Energy 36:1560–1567

    Article  CAS  Google Scholar 

  12. Mirershadi S, Reyhani A, Mortazavi SZ, Safibonab B, Khabazian Esfahani M (2011) The effects of bromine treatment on the hydrogen storage properties of multi-walled carbon nanotubes. Int J Hydrogen Energy 36:15622–15631

    Article  CAS  Google Scholar 

  13. Blackman JM, Patrick JW, Arenillas A, Shi W, Snape CE (2006) Activation of carbon nanofibers for hydrogen storage. Carbon 44:1376–1385

    Article  CAS  Google Scholar 

  14. Naresh Muthu R, Rajashabala S, Kannan R (2016) Hexagonal boron nitride (h-BN) nanoparticles decorated multi-walled carbon nanotubes (MWCNT) for hydrogen storage. Renew Energy 85:387–394

    Article  CAS  Google Scholar 

  15. Liu C, Chen Y, Wu C-Z, Xu S-T, Cheng H-M (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455

    Article  CAS  Google Scholar 

  16. Nishihara H, Kyotani T (2012) Templated nanocarbons for energy storage. Adv Mater 24:4473–4498

    Article  CAS  Google Scholar 

  17. Benard P, Chahine R (2007) Storage of hydrogen by physisorption on carbon and nanostructured materials. Scr Mater 56:803–808

    Article  CAS  Google Scholar 

  18. Hirscher M, Becher M, Haluska M, Quintel A, Skakalova V (2002) Hydrogen storage in carbon nanostructures. J Alloys Comp 330:654–658

    Article  Google Scholar 

  19. Ioannatos GE, Verykios XE (2010) H2 storage on single- and multi-walled carbon nanotubes. Int J Hydrogen Energy 35:622–628

    Article  CAS  Google Scholar 

  20. Zhou Z, Gao X, Yan J, Song D (2006) Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations. Carbon 44:939–947

    Article  CAS  Google Scholar 

  21. Miranda-Hernández M, Ayala J, Rincón ME (2003) Electrochemical storage of hydrogen in nanocarbon materials: electrochemical characterization of carbon black matrices. J Solid State Electrochem 7:264–270

    Article  Google Scholar 

  22. Jurewicz K, Frackowiak E, Beguin F (2002) Electrochemical storage of hydrogen in activated carbons. Fuel Process Technol 77–78:415–421

    Article  Google Scholar 

  23. Wang Y, Deng W, Liu X, Wang X (2009) Electrochemical hydrogen storage properties of ball-milled multi-wall carbon nanotubes. Int J Hydrogen Energy 34:1437–1443

    Article  CAS  Google Scholar 

  24. Yang CC, Li YJ, Chen WH (2010) Electrochemical hydrogen storage behavior of single-walled carbon nanotubes (SWCNTs) coated with Ni nanoparticles. Int J Hydrogen Energy 35:2336–2343

    Article  CAS  Google Scholar 

  25. Reyhani A, Mortazavi SZ, Mirershadi S, Moshfegh AZ, Parvin P, Nozad Golikand A (2011) Hydrogen storage in decorated multiwalled carbon nanotubes by Ca, Co, Fe, Ni, and Pd nanoparticles under ambient conditions. J Phys Chem C 115:6994–7001

    Article  CAS  Google Scholar 

  26. Silambarasan D, Surya VJ, Vasu V, Iyakutti K (2013) One-step process of hydrogen storage in single walled carbon nanotubes-tin oxide nano composite. Int J Hydrogen Energy 38:4011–4016

    Article  CAS  Google Scholar 

  27. Rahimi N, Doroodmand MM, Sabbaghi S, Sheikhi MH (2013) Electrochemical hydrogen storage of Pt and Ni nanoparticles-electrodeposited multi-walled carbon nanotube/micro-hybrid composite. J Electroanal Chem 689:297–302

    Article  CAS  Google Scholar 

  28. Noroozi AH, Safa S, Azimirad R, Shirzadi HR, Yazdi NG (2013) Microstructure and hydrogen storage properties of LaNi5-multi wall carbon nanotubes (MWCNTs) composite. Arab J Sci Eng 38:187–194

    Article  CAS  Google Scholar 

  29. Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758

    Article  CAS  Google Scholar 

  30. Reyhani A, Mortazavi SZ, Moshfegh AZ, Nozad Golikand A, Amiri M (2009) Enhanced electrochemical hydrogen storage by catalytic Fe-doped multi-walled carbon nanotubes synthesized by thermal chemical vapor deposition. J Power Sources 188:404–410

    Article  CAS  Google Scholar 

  31. Zhang H, Fu X, Chen Y, Yi S, Li S, Zhu Y, Wang L (2004) The electrochemical hydrogen storage of multi-walled carbon nanotubes synthesized by chemical vapor deposition using a lanthanum nickel hydrogen storage alloy as catalyst. Physica B 352:66–72

    Article  CAS  Google Scholar 

  32. Lee SM, Park KS, Choi YC, Park YS, Bok JM, Bae DJ et al (2000) Hydrogen adsorption and storage in carbon nanotubes. Synth Met 113:209–216

    Article  CAS  Google Scholar 

  33. Akbarzadeh R, Dehghani H (2014) A novel thermal reduction method towards the synthesis and growth of two unlike morphologies of nickel nanostructures. Dalton Trans 43:5474–5481

    Article  CAS  Google Scholar 

  34. Han M, Liu Q, He J, Song Y, Xu Z, Zhu J (2007) Controllable synthesis and magnetic properties of cubic and hexagonal phase nickel nanocrystals. Adv Mater 19:1096–1100

    Article  CAS  Google Scholar 

  35. Xu W, Liew KY, Liu H, Huang T, Sun C, Zhao Y (2008) Microwave-assisted synthesis of nickel nanoparticles. Mater Lett 62:2571–2573

    Article  CAS  Google Scholar 

  36. Bai L, Yuan F, Tang Q (2008) Synthesis of nickel nanoparticles with uniform size via a modified hydrazine reduction route. Mater Lett 62:2267–2270

    Article  CAS  Google Scholar 

  37. Liu S, Yuan R, Chai Y, Su H (2011) A label-free amperometric immunosensor based on horseradish peroxidase functionalized carbon nanotubes and bilayer gold nanoparticles. Sensors Actuator B 156:388–394

    Article  CAS  Google Scholar 

  38. Shahbazi P, Kiani A (2011) Nanoporous Ag and Pd foam: redox induced fabrication using electrochemically deposited nanoporous Cu foam with no need to any additive. Electrochim Acta 56:9520–9529

    Article  CAS  Google Scholar 

  39. Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng R 37:129–281

    Article  Google Scholar 

  40. Mawhinney D, Naumenko V, Kuznetsova A, Yates J, Liu J, Smalley RE (2000) Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K. J Am Chem Soc 122:2383–2384

    Article  CAS  Google Scholar 

  41. Zhang W, Zhang X, Zhang L, Chen G (2014) Fabrication of carbon nanotube-nickel nanoparticle hybrid paste electrodes for electrochemical sensing of carbohydrates. Sensors Actuator B Chem 192:459–466

    Article  CAS  Google Scholar 

  42. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99

    Article  Google Scholar 

  43. Jorio A, Pimenta MA, Souza Filho AG, Saito R, Dresselhaus G, Dresselhaus S (2003) Characterizing carbon nanotube samples with resonance Raman scattering. New J Phys 5:139.1–139.17

    Article  Google Scholar 

  44. Dresselhaus MS, Dresselhaus G, Jorio A, Souza Filho AG, Saito R (2002) Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40:2043–2061

    Article  CAS  Google Scholar 

  45. Shaf KVPM, Gedanken A, Prozorov R, Balogh J (1998) Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles. Chem Mater 10:3445–3450

    Article  Google Scholar 

  46. Liu N, Yin L, Kang L, Zhao X, Wang C, Zhang L et al (2010) Enhanced electrochemical hydrogen storage capacity of activated mesoporous carbon materials containing nickel inclusions. Int J Hydrogen Energy 35:12410–12420

    Article  CAS  Google Scholar 

  47. Hsieh CT, Chou YW, Lin JY (2007) Fabrication and electrochemical activity of Ni-attached carbon nanotube electrodes for hydrogen storage in alkali electrolyte. Int J Hydrogen Energy 32:3457–3464

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to University of Kashan for supporting this work by Grant No. (159183/34).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Dehghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarzadeh, R., Dehghani, H. Intensified electrochemical hydrogen storage capacity of multi-walled carbon nanotubes supported with Ni nanoparticles. J Solid State Electrochem 22, 395–405 (2018). https://doi.org/10.1007/s10008-017-3765-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3765-2

Keywords

Navigation