Skip to main content
Log in

Platinum/carbon black composites as counter electrodes for high-performance dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Low-cost counter electrodes for dye-sensitized solar cells (DSSCs) are prepared using platinum/carbon black (Pt/CB) composites via a spin-coating process. Ethyl cellulose (EC) is used as a binder to regulate the viscosity of the Pt/CB composites to facilitate the spin-coating process. The ratio of Pt to CB is ca. 1:3. The effects of film composition (Pt/CB:EC = 30:15, 30:4) and number of coating layers on the electrochemical properties of the Pt/CB electrodes and the performance of the corresponding DSSCs are studied. The results show that Pt/CB films with the lower concentration of EC (Pt/CB:EC = 30:4) exhibit high electrochemical activity, low charge transfer resistance, and good DSSC performance. These results are attributed to the lower loading of EC, which facilitates the charge transfer of the electrodes. DSSCs using these Pt/CB composite counter electrodes with lower loading of EC achieve a high conversion efficiency (8.06%) comparable to that of cells using Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Regan BO, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  2. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  3. Hagfeldt A, Boschloo G, Sun LC, Kloo L, Pettersson H (2010) Dye sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  4. Papageorgiou N, Maier WF, Grätzel M (1997) An iodine/triiodide reduction electrocatalyst for aqueous and organic media. J Electrochem Soc 144:876–884

    Article  CAS  Google Scholar 

  5. Hsieh TL, Chen HW, Kung CW, Wang CC, Vittal R, Ho KC (2012) A highly efficient dye-sensitized solar cell with a platinum nanoflowers counter electrode. J Mater Chem 22:5550–5559

    Article  CAS  Google Scholar 

  6. Calogero G, Calandra P, Irrera A, Sinopoli A, Citro I, Di Marco G (2011) A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells. Energy Environ Sci 4:1838–1844

    Article  CAS  Google Scholar 

  7. Kay A, Grätzel M (1996) Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol Energy Mater Sol Cells 44:99–117

    Article  CAS  Google Scholar 

  8. Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Bessho T, Cesar I, Liska P, Humphry-Baker R, Comte P, Péchy P, Grätzel M (2006) Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J Electrochem Soc 153:A2255–A2261

    Article  CAS  Google Scholar 

  9. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Grigorieva DSV IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  10. Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3:491–495

    Article  CAS  Google Scholar 

  11. Unarunotai S, Murata Y, Chialvo CE, Mason N, Petrov I, Nuzzo RG, Moore JS, Rogers JA (2010) Conjugated carbon monolayer membranes: methods for synthesis and integration. Adv Mater 22:1072–1077

    Article  CAS  Google Scholar 

  12. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD (2006) Nguyen SBT. Graphene-based composite Mater Nature 442:282–286

    CAS  Google Scholar 

  13. Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  Google Scholar 

  14. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308

    Article  CAS  Google Scholar 

  15. Kavan L, Yum J, Grätzel M (2011) Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano 5:165–172

    Article  CAS  Google Scholar 

  16. Yohannes T, Inganas O (1998) Photoelectrochemical studies of the junction between poly[3-(4-octylphenyl)thiophene] and a redox polymer electrolyte. Sol Energy Mater Sol Cells 51:193–202

    Article  CAS  Google Scholar 

  17. Ha YH, Nokolov N, Pollack SK, Mastrangelo J, Martin BD, Shashidhar R (2004) Towards a transparent, highly conductive poly(3,4-ethylenedioxythiophene). Adv Funct Mater 14:615–622

    Article  CAS  Google Scholar 

  18. Li Z, Ye B, Hu X, Ma X, Zhang X, Deng Y (2009) Facile electropolymerized-PANI as counter electrode for low cost dye-sensitized solar cell. Electrochem Commun 11:1768–1771

    Article  CAS  Google Scholar 

  19. Tai Q, Chen B, Guo F, Xu S, Hu H, Sebo B, Zhao XZ (2011) In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells. ACS Nano 5:3795–3799

    Article  CAS  Google Scholar 

  20. Wang M, Anghel AM, Marsan B, Ha NL, Pootrakulchote N, Zakeeruddin S, Grätzel M (2009) CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J Am Chem Soc 131:15976–15977

    Article  CAS  Google Scholar 

  21. Wu MX, Lin X, Hagfeldt A, Ma TL (2011) Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew Chem Int Ed 50:3520–3524

    Article  CAS  Google Scholar 

  22. Wang Q, Jiao L, Han Y, Du H, Peng W, Huan Q, Si D, Song Y, Wang Y, Yuan H (2011) CoS2 hollow spheres: fabrication and their application in lithium-ion batteries. J Phys Chem C 115:8300–8304

    Article  CAS  Google Scholar 

  23. Lin JY, Liao JH, Hung TY (2011) A composite counter electrode of CoS/MWCNT with high electrocatalytic activity for dye-sensitized solar cells. Electrochem Commun 13:977–980

    Article  CAS  Google Scholar 

  24. Kung CW, Chen HW, Lin CY, Huang KC, Vittal R, Ho KC (2012) CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell. ACS Nano 6:7016–7025

    Article  CAS  Google Scholar 

  25. Hou Y, Wang D, Yang XH, Fang WQ, Zhang B, Wang HF, Lu GZ, Hu P, Zhao HJ, Yang HG (2013) Rational screening low-cost counter electrodes for dye-sensitized solar cells. Nat Commun 4:1583–1590

    Article  Google Scholar 

  26. Yue G, Wu J, Xiao Y, Huang M, Lina J, Lin JY (2013) High performance platinum-free counter electrode of molybdenum sulfide–carbon used in dye-sensitized solar cells. J Mater Chem A 1:1495–1501

    Article  CAS  Google Scholar 

  27. Levy RB, Boudart M (1973) Platinum-like behavior of tungsten carbide in surface catalysis. Science 181:547–549

    Article  CAS  Google Scholar 

  28. Hwu HH, Chen JG (2005) Surface chemistry of transition metal carbides. Chem Rev 105:185–212

    Article  CAS  Google Scholar 

  29. Wu M, Lin X, Wang Y, Wang L, Guo W, Qi D, Peng X, Hagfeldt A, Grätzel M (2012) Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells. J Am Chem Soc 134:3419–3428

    Article  CAS  Google Scholar 

  30. Murakami TN, Grätzel M (2008) Counter electrodes for DSC: application of functional materials as catalysts. Inorg Chim Acta 361:572–580

    Article  CAS  Google Scholar 

  31. Liu I-P, Hou YC, Li CW, Lee YL (2017) High electrocatalytic counter electrodes based on carbon black for cobalt(III)/(II)-mediated dye-sensitized solar cells. J Mater Chem A 5:240–249

    Article  CAS  Google Scholar 

  32. Ramasamy E, Lee WJ, Lee DY, Song JS (2008) Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I3 ) reduction in dye-sensitized solar cells. Electrochem Commun 10:1087–1089

    Article  CAS  Google Scholar 

  33. Lee WJ, Ramasamy E, Lee DY, Song JS (2009) Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl Mater Interfaces 6:1145–1149

    Article  Google Scholar 

  34. Mayhew JDR, Bozym DJ, Punckt C, Aksay IA (2010) Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4:6203–6211

    Article  Google Scholar 

  35. Wang H, Sun K, Tao F, Stacchiola DJ, Hu YH (2013) 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew Chemie Int Ed 52:9210–9214

    Article  CAS  Google Scholar 

  36. Jang HS, Yun JM, Kim DY, Park DW, Na SI, Kim SS (2012) Moderately reduced graphene oxide as transparent counter electrodes for dye-sensitized solar cells. Electrochim Acta 81:301–307

    Article  CAS  Google Scholar 

  37. Joshi P, Xie Y, Ropp M, Galipeau D, Bailey S, Qiao Q (2009) Dye-sensitized solar cells based on low cost nanoscale carbon/TiO2 composite counter electrode. Energy Environ Sci 2:426–429

    Article  CAS  Google Scholar 

  38. Huang KC, Wang YC, Dong RX, Tsai WC, Tsai KW, Wang CC, Chen YH, Vittal R, Lin JJ, Ho KC (2010) A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode. J Mater Chem A 20:4067–4073

    Article  CAS  Google Scholar 

  39. Xiao Y, Wu J, Yue G, Lin J, Huang M, Lan Z (2011) Low temperature preparation of a high performance Pt/SWCNT counter electrode for flexible dye-sensitized solar cells. Electrochim Acta 56:8545–8550

    Article  CAS  Google Scholar 

  40. Im JS, Lee SK, Yun J, Lee YS (2012) CNT–Pt counter electrode prepared using a polyol process to achieve high performance in dye-sensitised solar cells. J Ind Eng Chem 18:1023–1028

    Article  CAS  Google Scholar 

  41. Yen MY, Teng CC, Hsiao MC, Liu PI, Chuan WP, Ma CCM, Hsieh CK, Tsai MC, Tsai CH (2011) Platinum nanoparticles/graphene composite catalyst as a novel composite counter electrode for high performance dye-sensitized solar cells. J Mater Chem A 21:12880–12888

    Article  CAS  Google Scholar 

  42. Hosi H, Tanaka S, Miyoshi T (2014) Pt-graphene electrodes for dye-sensitized solar cells. Mater Sci Eng B 190:47–51

    Article  Google Scholar 

  43. Wan L, Luo T, Wang S, Wang X, Guo Z, Xiong H, Dong B, Zhao L, Xu Z, Zhang X, Li J, Zhang Q, Wang B (2015) Pt/graphene nanocomposites with low Pt-loadings: synthesis through one- and two-step chemical reduction methods and their use as promising counter electrodes for DSSCs. Compos Sci Technol 113:46–53

    Article  CAS  Google Scholar 

  44. Jang HS, Yun JM, Kim DY, Na SY, Kim SS (2014) Transparent graphene oxide–Pt composite counter electrode fabricated by pulse current electrodeposition-for dye-sensitized solar cells. Surf Coat Tech 242:8–13

    Article  CAS  Google Scholar 

  45. Adachi T, Hoshi H (2013) Preparation and characterization of Pt/carbon counter electrodes for dye-sensitized solar cells. Mater Lett 94:15–18

    Article  CAS  Google Scholar 

  46. Das S, Sudhagar P, Nagarajan S, Ito E, Lee SY, Kang YS, Choi W (2012) Synthesis of graphene-CoS-electro-catalytic electrodes for dye sensitized solar cells. Carbon 50:4815–4821

    Article  CAS  Google Scholar 

  47. Zhang M, Zai J, Liu J, Chen M, Wang Z, Li G, Qian X, Qian L, Yu X (2017) A hierarchical CoFeS2/reduced graphene oxide composite for highly efficient counter electrodes in dye-sensitized solar cells. Dalton Trans 46:9511–9516

    Article  CAS  Google Scholar 

  48. Huang KC, Wang YC, Chen PY, Lai YH, Huang JH, Chen YH, Dong RX, Chu CW, Lin JJ, Ho KC (2012) High performance dye-sensitized solar cells based on platinum nanoparticle/multi-wall carbon nanotube counter electrodes: the role of annealing. J Power Source 203:274–281

    Article  CAS  Google Scholar 

  49. Yeh MH, Chang SH, Lin LY, Chou HL, Vittal R, Hwang BJ, Ho KC (2015) Size effects of platinum nanoparticles on the electrocatalytic ability of the counter electrode in dye-sensitized solar cells. Nano Energy 17:241–253

    Article  CAS  Google Scholar 

  50. Kavan L, Yum JH, Gratzel M (2014) Graphene based cathodes for ̈ liquid-junction dye sensitized solar cells: Electrocatalytic and mass transport effects. Electrochim Acta 128:349–359

    Article  CAS  Google Scholar 

  51. Hou S, Cai X, Wu H, Yu X, Peng M, Yan K, Zou D (2013) Nitrogen-doped graphene for dye-sensitized solar cells and the role of nitrogen states in the triiodide reduction. Energy Environ 6:3356–3362

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of this research by the Ministry of Science and Technology in Taiwan (103-2119-M-006-019-) and the Research Center for Energy Technology and Strategy of National Cheng Kung University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuh-Lang Lee.

Additional information

Chia-Shing Wu and Shanmuganathan Venkatesan contribute equally to this work.

Electronic supplementary material

ESM 1

(PDF 48.4 kb)

ESM 1

(PDF 741 kb)

ESM 1

(PDF 743 kb)

ESM 1

(PDF 22.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CS., Venkatesan, S., Chang, TW. et al. Platinum/carbon black composites as counter electrodes for high-performance dye-sensitized solar cells. J Solid State Electrochem 22, 255–262 (2018). https://doi.org/10.1007/s10008-017-3752-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3752-7

Keywords

Navigation