Skip to main content

Advertisement

Log in

Improving the performance of polymer solar cells by efficient optimizing the hole transport layer-graphene oxide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) materials have emerged as a promising alternative for hole transport layer (HTL) in polymer solar cells (PSCs) due to their unique structures and properties. However, insulating properties and eco-contaminative production of GO still need to be solved. Here, we report on the preparation of GO through an improved Hummers method without using NaNO3, which is an eco-friendly option because it avoids the emissions of NO2 and N2O4 toxic gases. Subsequently, the GO as HTL in PSCs is reduced by simple heat treatment of different temperatures in air, and the performance of devices is obviously improved. The FT-IR and XPS spectra show oxygenated functional groups in GO thin films are gradually removed with the increase of annealing temperature, which restores sp2 hybridized graphitic structure, and makes the GO thin films more conducive to the charge transfer. The highest power conversion efficiency of PSCs based on the P3HT: PC71BM system with GO as HTL is 3.39%, which approaches that of PSCs with PEDOT: PSS as HTL (3.41%). Moreover, the devices with annealed GO as HTL have better stability compared to devices with PEDOT: PSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H (2016) Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy 1:15027(1–7)

  2. Li X, Bi DQ, Yi CY, Décoppet JD, Luo JS, Zakeeruddin SM, Hagfeldt A, Grätzel M (2016) A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 353(6294):58–62

    Article  CAS  Google Scholar 

  3. Kurtz S, Atwater H, Rockett A, Buonassisi T, Honsberg C, Benner J (2016) Solar research not finished. Nat Photonics 10(3):141–142

    Article  CAS  Google Scholar 

  4. Romero E, Novoderezhkin VI, van Grondelle R (2017) Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 543(7645):355–365

    Article  CAS  Google Scholar 

  5. Plotzing T, Winzer T, Malic E, Neumaier D, Knorr A, Kurz H (2014) Experimental verification of carrier multiplication in graphene. Nano Lett 14(9):5371–5375

    Article  CAS  Google Scholar 

  6. Jean J, Brown PR, Jaffe RL, Buonassisi T, Bulović V (2015) Pathways for solar photovoltaics. Energy Environ Sci 8(4):1200–1219

    Article  CAS  Google Scholar 

  7. Mailoa JP, Bailie CD, Johlin EC, Hoke ET, Akey AJ, Nguyen WH, McGehee MD, Buonassisi (2015) T a 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl Phys Lett 106(12):121105

  8. Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J (2016) Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater 28(23):4734–4739

    Article  CAS  Google Scholar 

  9. Song HJ, Kim DH, Lee EJ, Haw JR, Moon DK (2014) Correlation of intramolecular charge transfer and orientation properties among quinacridone and acceptor units. Sol Energy Mater Sol Cells 123(2):112–121

    Article  CAS  Google Scholar 

  10. Song HJ, Kim DH, Lee EJ, Moon DK (2013) Conjugated polymers consisting of quinacridone and quinoxaline as donor materials for organic photovoltaics: orientation and charge transfer properties of polymers formed by phenyl structures with a quinoxaline derivative. J Mater Chem 1(1):6010–6020

    Article  CAS  Google Scholar 

  11. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6(9):591–595

    Article  Google Scholar 

  12. Jagadamma LK, Abdelsamie M, Labban AE, Aresu E, Ngongang Ndjawa GO, Anjum DH, Amassian A (2014) Efficient inverted bulk-heterojunction solar cells from low-temperature processing of amorphous ZnO buffer layers. J Mater Chem 2(33):13321–13331

    Article  CAS  Google Scholar 

  13. Nian L, Zhang W, Wu S, Qin L, Liu L, Xie Z, Wu H, Ma Y (2015) Perylene Bisimide as a promising zinc oxide surface modifier: enhanced interfacial combination for highly efficient inverted polymer solar cells. ACS Appl Mater Interfaces 7(46):25821–25827

    Article  CAS  Google Scholar 

  14. Nian L, Zhang W, Zhu N, Liu L, Xie Z, Wu H, Ma Y (2015) Photoconductive cathode interlayer for highly efficient inverted polymer solar cells. J Am Chem Soc 137(22):6995–6998

    Article  CAS  Google Scholar 

  15. Park H, Chang S, Smith M, Gradecak S, Kong J (2013) Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics. Sci Rep 3(4):1581

    Article  Google Scholar 

  16. Steim R, Kogler FR, Brabec CJ (2010) Interface materials for organic solar cells. J Mater Chem 20(13):2499–2512

    Article  CAS  Google Scholar 

  17. Chueh CC, Li CZ, Jen AKY (2015) Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ Sci 8(4):1160–1189

    Article  CAS  Google Scholar 

  18. Gao Y, Yip HL, Hau SK, O’Malley KM, Cho NC, Chen H, Jen AKY (2010) Anode modification of inverted polymer solar cells using graphene oxide. Appl Phys Lett 97(20):251

    Article  Google Scholar 

  19. Girtan M, Rusu M (2010) Role of ITO and PEDOT: PSS in stability/degradation of polymer: fullerene bulk heterojunctions solar cells. Sol Energy Mater Sol Cells 94(3):446–450

    Article  CAS  Google Scholar 

  20. Suh Y, Lu N, Lee SH, Chung WS, Kim K, Kim B, Ko MJ, Kim MJ (2012) Degradation of a thin Ag layer induced by poly(3,4-ethylenedioxythio phene):polystyrene Sulfonate in a transmission electron microscopy specimen of an inverted polymer solar cell. ACS Appl Mater Interfaces 4(10):5118–5124

    Article  CAS  Google Scholar 

  21. Jasieniak JJ, Seifter J, Jo J, Mates T, Heeger AJ (2012) A solution-processed MoOx anode interlayer for use within organic photovoltaic devices. Adv Funct Mater 22(12):2594–2605

    Article  CAS  Google Scholar 

  22. Li YP, Yu HZ, Huang XX, Wu ZP, Chen MD (2017) A simple synthesis method to prepare a molybdenum oxide hole-transporting layer for efficient polymer solar cells. RSC Adv 7(13):7890–7900

    Article  CAS  Google Scholar 

  23. Meyer J, Zilberberg K, Riedl T, Kahn A (2011) Electronic structure of vanadium pentoxide: an efficient hole injector for organic electronic materials. J Appl phys 110(3):033710- 033710-5

  24. Shen K, Yang R, Wang D, Jeng M, Chaudhary S, Ho K, Wang D (2016) Stable CdTe solar cell with V2O 5 as a back contact buffer layer. Sol Energy Mater Sol Cells 144:500–508

    Article  CAS  Google Scholar 

  25. Yang H, Gong C, Hong GG, Ming LC (2012) Organic solar cells employing electrodeposited nickel oxide nanostructures as the anode buffer layer. Sol Energy Mater Sol Cells 101(21):256–261

    Article  CAS  Google Scholar 

  26. Yun JM, Yeo JS, Kim J, Jeong HG, Kim DY, Noh YJ, Kim SS, Ku BC, Na SI (2011) Solution-Processable reduced Graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells. Adv Mater 23(42):4923–4928

    Article  CAS  Google Scholar 

  27. Rafique S, Abdullah SM, Alhummiany H, Abdel-wahab MS, Iqbal J, Sulaiman K (2017) Bulk Heterojunction organic solar cells with Graphene oxide hole transport layer: effect of varied concentration on photovoltaic performance. J Phys Chem C 121(1):140–146

    Article  CAS  Google Scholar 

  28. Paci B, Kakavelakis G, Generosi A, Rossi Albertini V, Wright JP, Ferrero C, Konios D, Stratakis E, Kymakis E (2015) Stability enhancement of organic photovoltaic devices utilizing partially reduced graphene oxide as the hole transport layer: nanoscale insight into structural/interfacial properties and aging effects. RSC Adv 5(129):106930–106940

    Article  CAS  Google Scholar 

  29. Kang TW, Noh YJ, Kim SS, Joh HI, Na SI (2015) Efficient inverted-structure polymer solar cells with reduced graphene oxide for anode modification. J Ind Eng Chem 24:206–210

    Article  CAS  Google Scholar 

  30. Konios D, Kakavelakis G, Petridis C, Savva K, Stratakis E, Kymakis E (2016) Highly efficient organic photovoltaic devices utilizing work-function tuned graphene oxide derivatives as the anode and cathode charge extraction layers. J Mater Chem A 4(5):1612–1623

    Article  CAS  Google Scholar 

  31. Kim HP, Yusoff ARbM, Jang J (2013) Organic solar cells using a reduced graphene oxide anode buffer layer. Sol Energy Mater Sol Cells 110(2):87-93

  32. Liu X, Kim H, Guo LJ (2013) Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells. Org Electron 14(2):591–598

    Article  CAS  Google Scholar 

  33. Kwon SN, Jung CH, Na SI (2016) Electron-beam-induced reduced graphene oxide as an alternative hole-transporting interfacial layer for high-performance and reliable polymer solar cells. Org Electron 34:67–74

    Article  CAS  Google Scholar 

  34. Noh YJ, Park SC, Hwang IT, Choi JH, Kim SS, Jung CH, Na SI (2014) High-performance polymer solar cells with radiation-induced and reduction-controllable reduced graphene oxide as an advanced hole transporting material. Carbon 79(1):321–329

    Article  CAS  Google Scholar 

  35. Chen J, Yao B, Li C, Shi G (2013) An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64(11):225–229

    Article  CAS  Google Scholar 

  36. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-Graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212

    Article  CAS  Google Scholar 

  37. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  CAS  Google Scholar 

  38. Eigler S, Dotzer C, Hirsch A, Enzelberger M, Müller P (2012) Formation and decomposition of CO2 intercalated Graphene oxide. Chem Mater 24(7):1276–1282

    Article  CAS  Google Scholar 

  39. Liu Z, Duan X, Qian G, Zhou X, Yuan W (2013) Eco-friendly one-pot synthesis of highly dispersible functionalized graphene nanosheets with free amino groups. Nano Technol 24(4):045609

    Google Scholar 

  40. Amieva EJC, Fuentes-Ramirez R, Martinez-Hernandez AL, Millan-Chiu B, Lopez-Marin LM, Castaño VM, Velasco-Santos C (2015) Graphene oxide and reduced graphene oxide modification with polypeptide chains from chicken feather keratin. J Alloys Compd 643:137–143

    Article  Google Scholar 

  41. Singh M, Yadav A, Kumar S, Agarwal P (2015) Annealing induced electrical conduction and band gap variation in thermally reduced graphene oxide films with different sp2/sp3 fraction. Appl Surf Sci 326:236–242

    Article  CAS  Google Scholar 

  42. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of grapheme. Nat Nanotechnol 8(4):235–246

    Article  CAS  Google Scholar 

  43. Bonaccorso F, Tan PH, Ferrari AC (2013) Multiwall nanotubes, multilayers, and hybrid nanostructures: new frontiers for technology and Raman spectroscopy. ACS Nano 7(3):1838–1844

    Article  CAS  Google Scholar 

  44. Wang YY, Ni ZH, Yu T, Shen ZX, Wang HM, Wu YH, Chen W, Wee ATS (2008) Raman studies of monolayer graphene: the substrate effect. J Phys Chem C 112(29):10637–10640

    Article  CAS  Google Scholar 

  45. Zhang K, Mao L, Zhang LL, Chan HSO, Zhao XS, Wu J (2011) Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. J Mater Chem 21(20):7302–7307

    Article  CAS  Google Scholar 

  46. Agnello S, Alessi A, Buscarino G, Piazza A, Maio A, Botta L, Scaffaro R (2017) Structural and thermal stability of graphene oxide-silica nanoparticles nanocomposites. J Alloys Compd 695:2054–2064

    Article  CAS  Google Scholar 

  47. Jeon YJ, Yun JM, Kim DY, Na SI, Kim SS (2012) High-performance polymer solar cells with moderately reduced graphene oxide as an efficient hole transporting layer. Sol Energy Mater Sol Cells 105(105):96–102

    Article  CAS  Google Scholar 

  48. Sato Y, Tokumaru R, Nishimura E, Song PK, Shigesato Y, Utsumi K, Ligusa H (2005) Structural, electrical, and optical properties of transparent conductive In2O3–SnO2 films. J Vac Sci Technol A 23(4):1167–1172

    Article  CAS  Google Scholar 

  49. Jeon YJ, Yun JM, Kim DY, Na SI, Kim SS (2014) Moderately reduced graphene oxide as hole transport layer in polymer solar cells via thermal assisted spray process. Appl Surf Sci 296(4):140–146

    Article  CAS  Google Scholar 

  50. Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ (2013) Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun 4(7):2761

    Google Scholar 

  51. Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ (2014) Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci 7(3):982–988

    Article  CAS  Google Scholar 

  52. Chen BX, Rao HS, Li WG, Xu YF, Chen HY, Kuang DB, Su CY (2016) Achieving high-performance planar perovskite solar cell with Nb-doped TiO2 compact layer by enhanced electron injection and efficient charge extraction. J Mater Chem A 4(15):5647–5653

    Article  CAS  Google Scholar 

  53. Heo HH, Han HJ, Kim D, Ahn TK, Sang HI (2015) Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ Sci 8(5):1602–1608

    Article  CAS  Google Scholar 

  54. Kakavelakis G, Maksudov T, Konios D, Paradisanos I, Kioseoglou G, Stratakis E, Stratakis E (2017) Efficient and highly air stable planar inverted Perovskite solar cells with reduced Graphene oxide doped PCBM electron transporting layer. Adv Energy Mater 7(7):1602120

    Article  Google Scholar 

  55. Taherian F, Marcon V, van der Vegt NFA, Leroy F (2013) What is the contact angle of water on graphene? Langmuir 29(5):1457–1465

    Article  CAS  Google Scholar 

  56. Moon BJ, Lee GY, Im MJ, Song S, Park T (2014) In situ modulation of the vertical distribution in a blend of P3HT and PC60 BM via the addition of a composition gradient inducer. Nano 6(4):2440–2446

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 61474046 and 61176061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangzhong Yu.

Electronic supplementary material

ESM 1

(DOCX 1201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Yu, H., Wu, Z. et al. Improving the performance of polymer solar cells by efficient optimizing the hole transport layer-graphene oxide. J Solid State Electrochem 22, 317–329 (2018). https://doi.org/10.1007/s10008-017-3749-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3749-2

Keywords

Navigation