Skip to main content

Advertisement

Log in

CdSe x S1−x /CdS-cosensitized 3D TiO2 hierarchical nanostructures for efficient energy conversion

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Three-dimensional TiO2 hierarchical nanostructures (3D-TiO2-HNs) containing TiO2 nanotrees and nest-like hollow spheres were synthesized and used as backbones for CdSe x S1−x quantum dot (QD) loading. These CdSe x S1−x QD-sensitized 3D-TiO2-HNs were then used as photoelectrodes in the preparation of quantum-dot-sensitized solar cells. As revealed by TEM images, the highly porous 3D-TiO2-HNs represent an excellent framework on which to deposit a large number of CdSe x S1−x QDs in order to form homogeneous and compact CdSe x S1−x -sensitized layers in photoelectrodes using a spin-assisted successive ionic layer adsorption and reaction method (spin-SILAR). Following careful adjustment of the molar ratio of Se2− to S2−, the number of spin-SILAR cycles, and the thickness of the CdS passivation layer used, the best-performing QDSC was shown to yield a short-circuit current density of 18.22 mA cm−2, an open-circuit voltage of 0.520 V, a fill factor of 0.510, and a power conversion efficiency of 4.83%. This high performance is possible because the device is able to absorb a relatively broad range of wavelengths and because charge recombination is suppressed in the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Samadpour M (2017) Efficient CdS/CdSe/ZnS quantum dot sensitized solar cells prepared by ZnS treatment from methanol solvent. Sol Energy 144:63–70

    Article  CAS  Google Scholar 

  2. Lan Z, Wu WX, Zhang S, Que LF, Wu JH (2016) Preparation of high-efficiency CdS quantum-dot-sensitized solar cells based on ordered TiO2 nanotube arrays. Ceram Int 42:8058–8065

    Article  CAS  Google Scholar 

  3. Zhou CY, Zhou LY, Xu JH, Gan YF (2016) Controllable synthesis of CdS quantum dots and their photovoltaic application on quantum-dot-sensitized ZnO nanorods. J Solid State Electrochem 20:533–540

    Article  CAS  Google Scholar 

  4. Jiao S, Du J, Du ZL, Long DH, Jiang WY, Pan ZX, Li Y, Zhong XH (2017) Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12. J Phys Chem Lett 8:559–564

    Article  CAS  Google Scholar 

  5. Ji FW, Zhou R, Niu HH, Wan L, Guo HE, Mao XL, Gan W, Xu JZ (2016) Oriented rutile TiO2 nanorod arrays for efficient quantum dot-sensitized solar cells with extremely high open-circuit voltage. Ceram Int 42:12194–12201

    Article  CAS  Google Scholar 

  6. Zhao K, Pan ZX, Sero IM, Canovas E, Wang H, Song Y, Gong XQ, Wang J, Bonn M, Bisquert J, Zhong XH (2015) Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. J Am Chem Soc 137:5602–5609

  7. Ren ZW, Wang J, Pan ZX, Zhao K, Zhang H, Li Y, Zhao YX, Sero IM, Bisquert J, Zhong XH (2015) Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%. Chem Mater 27:8398–8405

    Article  CAS  Google Scholar 

  8. Pan ZX, Zhong XH (2016) A ZnS and metal hydroxide composite passivation layer for recombination control in high efficiency quantum dot sensitized solar cells. J Mater Chem A 4:18976–18982

    Article  CAS  Google Scholar 

  9. Ren ZW, Wang ZQ, Wang R, Pan ZX, Gong XQ, Zhong XH (2016) Effects of metal oxyhydroxide coatings on photoanode in quantum dot sensitized solar cells. Chem Mater 28:2323–2330

    Article  CAS  Google Scholar 

  10. Huang F, Hou J, Zhang QF, Wang Y, Masse RC, Peng SL, Wang HL, Liu JS, Cao GZ (2016) Doubling the power conversion efficiency in CdS/CdSe quantum dot sensitized solar cells with a ZnSe passivation layer. Nano Energy 26:114–122

    Article  CAS  Google Scholar 

  11. Shi X, Xu JP, Shi SB, Zhang XS, Li SB, Wang C, Wang XL, Li LL, Li L (2016) Effect of CdS modification on photoelectric properties of TiO2/PbS quantum dots bulk heterojunction. J Phys Chem Solids 93:33–39

  12. Zhou R, Wan L, Niu HH, Yang L, Mao XL, Zhang QF, Miao SD, Xu JZ, Cao GZ (2016) Tailoring band structure of ternary CdS x Se1−x quantum dots for highly efficient sensitized solar cells. Sol Energy Mater Sol Cells 155:20–29

  13. Yang WJ, Zhao K, Izuishi T, Li Y, Shen Q, Zhong XH (2015) CdSeTe/CdS type-I core/shell quantum dot sensitized solar cells with efficiency over 9%. J Phys Chem C 119:28800–28808

    Article  CAS  Google Scholar 

  14. Leventis HC, Haque SA (2009) Control of charge recombination at nanostructured quantum dot sensitized TiO2 interfaces employing a multi-step redox cascade. Energy Environ Sci 2:1176–1179

    Article  CAS  Google Scholar 

  15. Sankapal BR, Salunkhe DB, Majumder S, Dubal DP (2016) Solution-processed CdS quantum dots on TiO2: light-induced electrochemical properties. RSC Adv 6:83175–83184

    Article  CAS  Google Scholar 

  16. Chen X, Lan Z, Zhang S, Wu JH, Zhang JF (2017) CdS sensitized TiO2 nanorod arrays based solar cells prepared with polymer-assisted layer-by-layer adsorption and reaction method. Opt Commun 395:111–116. https://doi.org/10.1016/j.optcom.2016.04.050

  17. Pawar SA, Patil DS, Lokhande AC, Gang MG, Shin JC, Patil PS, Kim JH (2016) Chemical synthesis of CdS onto TiO2 nanorods for quantum dot sensitized solar cells. Opt Mater 58:46–50

    Article  CAS  Google Scholar 

  18. Wu WQ, Feng HL, Rao HS, Xu YF, Kuang DB, Su CY (2014) Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures. Nat Commun 5:3968. https://doi.org/10.1038/ncomms4968

    CAS  Google Scholar 

  19. Feng HL, Wu WQ, Rao HS, Li LB, Kuang DB, Su CY (2015) Three-dimensional hyperbranched TiO2/ZnO heterostructured arrays for efficient quantum dot-sensitized solar cells. J Mater Chem A 3:14826–14832

    Article  CAS  Google Scholar 

  20. Majumder S, Baviskar PK, Sankapal BR (2016) Light-induced electrochemical performance of 3D-CdS nanonetwork: effect of annealing. Electrochim Acta 222:100–107

  21. Majumder S, Sankapal BR (2017) Facile fabrication of CdS/CdSe core–shell nanowire heterostructure for solar cell applications. New J Chem 41:5808–5817

    Article  CAS  Google Scholar 

  22. Que LF, Lan Z, Wu WX, Wu JH, Lin JM, Huang ML (2014) High-efficiency dye-sensitized solar cells based on ultra-long single crystalline titanium dioxide nanowires. J Power Sources 266:440–447

    Article  CAS  Google Scholar 

  23. Wu WQ, Xu YF, Rao HS, Feng HL, Su CY, Kuang DB (2014) Constructing 3D branched nanowire coated macroporous metal oxide electrodes with homogeneous or heterogeneous compositions for efficient solar cells. Angew Chem Int Ed 53:4816–4821

  24. Gao SW, Lan Z, Wu WX, Que LF, Wu JH, Lin JM, Huang ML (2014) Fabrication and photovoltaic performance of high efficiency front-illuminated dye-sensitized solar cell based on ordered TiO2 nanotube arrays. Acta Phys Chim Sin 30:446–452

  25. Lan Z, Wu WX, Zhang S, Que LF, Wu JH (2016) An efficient method to prepare high-performance dye-sensitized photoelectrodes using ordered TiO2 nanotube arrays and TiO2 quantum dot blocking layers. J Solid State Electrochem 20:2643–2650

    Article  CAS  Google Scholar 

  26. Cao CL, Hu CG, Shen WD, Wang SX, Tian YS, Wang X (2012) Synthesis and characterization of TiO2/CdS core–shell nanorod arrays and their photoelectrochemical property. J Alloy Compd 523:139–145

    Article  CAS  Google Scholar 

  27. Lin YB, Lin Y, Wu JH, Zhang XL, Fang BP (2016) Optimization of CdSe layer on modified ZnO hierarchical spheres by spin-SILAR for efficient CdS/CdSe co-sensitized solar cells. J Mater Sci Mater Electron 27:6656–6664

    Article  CAS  Google Scholar 

  28. Zhu F, Dong H, Wang Y, Wu DP, Li JM, Pan JL, Li Q, Ai XC, Zhang JP, Xu DS (2013) Dual-functional hetero-structured TiO2 nanotrees composed of rutile trunks and anatase branches for improved performance of quantum dot-sensitized solar cells. Phys Chem Chem Phys 15:17798–17803

    Article  CAS  Google Scholar 

  29. Zhang YH, Zhu J, Yu XC, Wei JF, Hu LH, Dai SY (2012) The optical and electrochemical properties of CdS/CdSe co-sensitized TiO2 solar cells prepared by successive ionic layer adsorption and reaction processes. Sol Energy 86:964–971

    Article  CAS  Google Scholar 

  30. Gakhar R, Smith YR, Misra M, Chidambaram D (2015) Photoelectric performance of TiO2 nanotube array photoelectrodes sensitized with CdS0.54Se0.46 quantum dots. Appl Surf Sci 355:1279–1288

    Article  CAS  Google Scholar 

  31. Wu WQ, Lei BX, Rao HS, Xu YF, Wang YF, Su CY (2013) Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells. Sci Rep 3:1352. https://doi.org/10.1038/srep01352

    Article  Google Scholar 

  32. Rao HS, Wu WQ, Liu Y, Xu YF, Chen BX, Chen HY, Kuang DB, Su CY (2014) CdS/CdSe co-sensitized vertically aligned anatase TiO2 nanowire arrays for efficient solar cells. Nano Energy 8:1–8

    Article  CAS  Google Scholar 

  33. Yu LB, Ren XF, Yang ZR, Han YQ, Li Z (2016) The preparation and assembly of CdSxSe1−x alloyed quantum dots on TiO2 nanowire arrays for quantum dot-sensitized solar cells. J Mater Sci Mater Electron 27:7150–7160

  34. Mali SS, Shim CS, Kim H, Hong CK (2016) Single step synthesized 1D TiO2 vertically aligned nanorod arrays for CdS sensitized quantum dot sensitized solar cells. Ceram Int 42:1973–1981

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the National Natural Science Foundation of China (nos. 61474047, 51002053, and 51472094), the Fujian Provincial Science Foundation for Distinguished Young Scholars (2015 J06011), the Fujian Provincial Youth Top-Notch Talents Supporting Program, the Prominent Young Talents and New Century Excellent Talents Supporting Programs at Fujian Provincial University, and the Promotion Program for Young and Middle-Aged Teachers in Science and Technology Research of Huaqiao University (ZQN-YX102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Lan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Z., Chen, X., Zhang, S. et al. CdSe x S1−x /CdS-cosensitized 3D TiO2 hierarchical nanostructures for efficient energy conversion. J Solid State Electrochem 22, 347–353 (2018). https://doi.org/10.1007/s10008-017-3748-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3748-3

Keywords

Navigation