Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1549–1555 | Cite as

Voltammetric studies of the interaction between lead metal ion and the methyl parathion pesticide

  • Daisy Alves Cardoso
  • Eliana Maíra Agostini Valle
  • Lucia Codognoto
Original Paper
  • 62 Downloads

Abstract

In this work, the interaction of the pesticide methyl parathion (MP) with the lead metal ion was evaluated using a carbon electrode reused from a zinc battery. MP showed a reduction peak around − 0.57 V, with characteristics of irreversible processes, followed by a redox pair at 0.02 and 0.04 V. For the Pb2+ ion was observed a redox pair with the peaks at − 0.65 and − 0.44 V, with characteristics of quasi-reversible process. The evaluation of the MP interaction with the metal ion was performed by anodic stripping voltammetry and by UV-Vis spectroscopy. The studies indicated the formation of a new species in solution with a stripping peak at − 0.60 V, as well as a pronounced effect on the stripping peak of the methyl parathion. Since this change is in the hydroxylamine redox couple, it suggests that the interaction is through the sulfur atom present in the parathion molecule. Through titration studies, was suggested a possible 1:2 Pb:MP stoichiometry for the complex formed. Langmuir linearization algorithms of titration data with the metal allowed us to calculate the stability constant for the Pb:MP complex (log K′ = 7.6).The confirmation of the interaction between the species in solution was evidenced by UV-Vis spectroscopy, with the reduction of the MP absorption band at 282 nm.

Keywords

Parathion methyl Lead Complexation Anodic stripping voltammetry 

Notes

Acknowledgements

The authors thank FAPESP and CNPq, Brazil, for scholarships and financial support to this work.

References

  1. 1.
    Chen YF, Kao CL, Lee WK, Huang PC, Hsu CY, Kuei CH (2016) J Chin Chem Soc 63:1–7CrossRefGoogle Scholar
  2. 2.
    Kumar J, Souza SFD (2010) Biosens bioelectron 26:1292–1296CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Jaffrezic-Renault N (2001) Sensors 1:60–74CrossRefGoogle Scholar
  5. 5.
    Wang Y, Qiu H, Hu S, Xu J (2010) Sens actuators B 147:587–592Google Scholar
  6. 6.
    Jeyapragasam T, Saraswathi R, Chen SM, Lou BS (2013) Int J Electrochem Sci 8:12353–12366Google Scholar
  7. 7.
    Fan S, Xiao F, Liu L, Zhao F, Zen B (2008) Sensor and actuators B 132:34–39CrossRefGoogle Scholar
  8. 8.
    Pan D, Ma S, Bo X, Guo L (2011) Microchim Acta 173:215–219CrossRefGoogle Scholar
  9. 9.
    Yao Y, Zhang L, Xu J, Wang X, Duan X, Wen Y (2014) J Electroanal Chem 713:1–8CrossRefGoogle Scholar
  10. 10.
    Strydom C, Robinson C, Pretorius E, Whitcutt JM, Marx J, Bornman MS (2006) Water SA 32(4):543–554Google Scholar
  11. 11.
    Moreira FR, Moreira JC (2004) Rev Panam Salud Publica 15(2):119–129CrossRefGoogle Scholar
  12. 12.
    Bosso ST, Enzweiler J (2008) Quim Nova 31(2):394–400CrossRefGoogle Scholar
  13. 13.
    Junior FB, Santos JET, Gerlach RF, Parsons PJ (2005) Environ Health Perspect 113(12):1669–1674CrossRefGoogle Scholar
  14. 14.
    Olympio KPK, Oliveira PV, Naozuka J, Cardoso MRA, Marques AF, Günther WMR, Bechara EJH (2010) Neurotoxicol Teratol 32:272–279CrossRefGoogle Scholar
  15. 15.
    Morante-Zarcero S, Pérez-Quintanilla D, Sierra I (2015) J Solid State Electrochem 19:2117–2127CrossRefGoogle Scholar
  16. 16.
    Salmanipour A, Ali MT (2011) J Solid State Electrochem 15:2695–2702CrossRefGoogle Scholar
  17. 17.
    Morales GR, Silva TR, Galicia L (2003) J Solid State Electrochem 7:355–360CrossRefGoogle Scholar
  18. 18.
    Raghu GK, Sampath S, Pandurangappa M (2012) J Solid State Electrochem 16:1953–1963CrossRefGoogle Scholar
  19. 19.
    Pinto L, Lemos SG (2014) Electroanalysis 26:299–305CrossRefGoogle Scholar
  20. 20.
    Simionca I, Arvinte A, Ardeleanu R, Pinteala M (2012) Electroanalysis 24:1–10CrossRefGoogle Scholar
  21. 21.
    Intarakamhang S, Schuhmann W, Schulte A (2013) J Solid State Electrochem 17:1535–1542CrossRefGoogle Scholar
  22. 22.
    Casali CA, Moterle DF, Rheinheimer DS, Brunetto G, Corcini ALM, Kaminski J,  Melo GWB (2008) R Bras Ci Solo 32:1479-1487Google Scholar
  23. 23.
    Valle EMA, Santamaria C, Machado SAS, Fernandez JM (2010) J Braz Chem Soc 00:1–8Google Scholar
  24. 24.
    Zhao YG, Zheng XW, Huang ZY, Yang MM (2003) Anal Chim Acta 482:29–36CrossRefGoogle Scholar
  25. 25.
    Karuppiah C, Palanisamy S, Chen S, Emmanuel R, Ajmal Ali M, Muthukrishnan P, Prakash P, Al-Hemaid FMA (2014) J Solid State Electrochem 18:1847–1854CrossRefGoogle Scholar
  26. 26.
    Yin H, Zhou Y, Han R, Qiu Y, Ai S, Zhu L (2012) J Solid State Electrochem 16:75–82CrossRefGoogle Scholar
  27. 27.
    Ma J, Zhang W (2011) Microchim Acta 175:309-314Google Scholar
  28. 28.
    Fedorczyk A, Ratajczak J, Kuzmych O, Skompska M (2015) J Solid State Electrochem 19:2849–2858CrossRefGoogle Scholar
  29. 29.
    Nicholson RS, Shain I (1964) Anal Chem 36:706–723CrossRefGoogle Scholar
  30. 30.
    Yazhen W, Hongxin Q, Siqian H, Junhui X (2010) Sen actuators B Chem 147:587–592CrossRefGoogle Scholar
  31. 31.
    Brett CMA, Brett AMO (1993) Electrochemistry: principles, methods, and applications. Oxford University Press Inc., New YorkGoogle Scholar
  32. 32.
    Vanderaspoilden S, Christophe J, Doneux T, Buess-Herman C (2015) Electrochim Acta 162:156–162CrossRefGoogle Scholar
  33. 33.
    Van den Berg CMG, Kramer JR (1979) Anal Chim Acta 106:113–120CrossRefGoogle Scholar
  34. 34.
    Alves SA, Ferreira TCR, Migliorini FL, Baldan MR, Ferreira NG, Lanza MRV (2013) J Electroanal Chem 702:1–7CrossRefGoogle Scholar
  35. 35.
    Pearson RJ (1963) J Am Chem Soc 85(22):3533–3539CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São PauloSão PauloBrazil

Personalised recommendations