Skip to main content
Log in

Electro-optical performance of inorganic monolithic electrochromic device with a pulsed DC sputtered Li x Mg y N ion conductor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium magnesium nitride (Li x Mg y N) thin films were deposited by pulsed DC reactive magnetron sputtering from a LiMg alloy target in the mixture gas of Ar and N2. The as-prepared Li x Mg y N films were amorphous. A monolithic inorganic electrochromic device (ECD) based on WO3/NiO complementary structure was fabricated using the Li x Mg y N as the ion conductor layer. The addition of a 150-nm thick Si3N4 buffer layer between Li x Mg y N and NiO made coloration and bleaching reversible and stable. Electrochemical and optical characterizations were conducted to evaluate the performance of the ECD. Electro-optical data were recorded for both 1000 chronoamperometric cycles and 1000 voltammetric cycles. Activation and degradation of the electro-optical properties of the ECD were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, Amsterdam

    Google Scholar 

  2. Monk PMS, Mortimer RJ, Rosseinsky DR (2007) Electrochromism and electrochromic devices. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Lampert CM (1984) Electrochromic materials and devices for energy efficient windows. Sol Energy Mater 11:1–27

    Article  CAS  Google Scholar 

  4. Baetens R, Jelle BP, Gustavsen A (2010) Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Sol Energy Mater Sol Cells 94:87–105

    Article  CAS  Google Scholar 

  5. Rosseinsky DR, Mortimer RJ (2001) Electrochromic systems and the prospects for devices. Adv Mater 13:783–793

    Article  CAS  Google Scholar 

  6. Coleman JP, Lynch AT, Madhukar P, Wagenknecht JH (1999) Printed, flexible electrochromic displays using interdigitated electrodes. Sol Energy Mater Sol Cells 56:395–418

    Article  CAS  Google Scholar 

  7. Niwa T, Takai O (2010) All-solid-state reflectance-type electrochromic devices using iridium tin oxide film as counter electrode. Thin Solid Films 518:5340–5344

    Article  CAS  Google Scholar 

  8. Sauvet K, Sauques L, Rougier A (2009) IR electrochromic WO3 thin films: from optimization to devices. Sol Energy Mater Sol Cells 93:2045–2049

    Article  CAS  Google Scholar 

  9. Demiryont H, Moorehead D (2009) Electrochromic emissivity modulator for spacecraft thermal management. Sol Energy Mater Sol Cells 93:2075–2078

    Article  CAS  Google Scholar 

  10. Niklasson GA, Granqvist CG (2007) Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J Mater Chem 17:127–156

    Article  CAS  Google Scholar 

  11. Deb SK (2008) Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol Energy Mater Sol Cells 92:245–258

    Article  CAS  Google Scholar 

  12. Moulki H, Park DH, Min BK, Kwon H, Hwang SJ, Choy JH, Toupance T, Campet G, Rougier A (2012) Improved electrochromic performances of NiO based thin films by lithium addition: from single layers to devices. Electrochim Acta 74:46–49

    Article  CAS  Google Scholar 

  13. Xia XH, Tu JP, Zhang J, Wang XL, Zhang WK, Huang H (2008) Morphology effect on the electrochromic and electrochemical performances of NiO thin films. Electrochim Acta 53:5721–5724

    Article  CAS  Google Scholar 

  14. Subrahmanyam A, Kumar CS, Karuppasamy KM (2007) A note on fast protonic solid state electrochromic device: NiOx/Ta2O5/WO3-x. Sol Energy Mater Sol Cells 91:62–66

    Article  CAS  Google Scholar 

  15. Mathew JGH, Sapers SP, Cumbo MJ, O’Brien NA, Sargent RB, Raksha VP, Lahaderne RB, Hichwa BP (1997) Large area electrochromics for architectural applications. J Non-Cryst Solids 218:342–346

    Article  CAS  Google Scholar 

  16. Nagai J, McMeeking GD, Saitoh Y (1999) Durability of electrochromic glazing. Sol Energy Mater Sol Cells 56:309–319

    Article  CAS  Google Scholar 

  17. Larsson AL, Niklasson GA (2004) Optical properties of electrochromic all-solid-state devices. Sol Energy Mater Sol Cells 84:351–360

    Article  CAS  Google Scholar 

  18. Patel KJ, Desai MS, Panchal CJ (2015) Studies of ZrO2 electrolyte thin-film thickness on the all-solid thin-film electrochromic devices. J Solid State Electrochem 19:275–279

    Article  CAS  Google Scholar 

  19. Goldner RB, Arntz FO, Berera G, Haas TE, Wei G, Wong KK, Yu PC (1992) A monolithic thin-film electrochromic window. Solid State Ionics 53-56:617–627

    Article  CAS  Google Scholar 

  20. Ashrit PV, Girouard FE, Truong VV (1996) Fabrication and testing of an all-solid state system for smart window application. Solid State Ionics 89:65–73

    Article  CAS  Google Scholar 

  21. Cogan SF, Rauh RD, Klein JD, Nguyen NM, Jones RB, Plante TD (1997) Variable transmittance coatings using electrochromic lithium chromate and amorphous WO3 thin films. J Electrochem Soc 144:956–960

    Article  CAS  Google Scholar 

  22. Daneo A, Macrelli G, Polato P, Poli E (1999) Photometric characterization of an all solid state inorganic electrochromic large area device. Sol Energy Mater Sol Cells 56:237–248

    Article  CAS  Google Scholar 

  23. Zhang X, Zhang H, Li Q, Luo H (2000) An all-solid-state inorganic electrochromic display of WO3 and NiO films with LiNbO3 ion conductor. IEEE Electr Device L 21:215–217

    Article  CAS  Google Scholar 

  24. Wang SC, Liu KY, Huang JL (2011) Tantalum oxide film prepared by reactive magnetron sputtering deposition for all-solid-state electrochromic device. Thin Solid Films 520:1454–1459

    Article  CAS  Google Scholar 

  25. Liu Q, Dong G, Xiao Y, Gao F, Wang M, Wang Q, Wang S, Zuo H, Diao X (2015) An all-thin-film inorganic electrochromic device monolithically fabricated on flexible PET/ITO substrate by magnetron sputtering. Mater Lett 142:232–234

    Article  CAS  Google Scholar 

  26. Oukassi S, Giroud-Garampon C, Dubarry C, Ducros C, Salot R (2016) All inorganic thin film electrochromic device using LiPON as the ion conductor. Sol Energy Mater Sol Cells 145:2–7

    Article  CAS  Google Scholar 

  27. Su Y, Falgenhauer J, Polity A, Leichtweiß T, Kronenberger A, Obel J, Zhou S, Schlettwein D, Janek J, Meyer BK (2015) LiPON thin films with high nitrogen content for application in lithium batteries and electrochromic devices prepared by RF magnetron sputtering. Solid State Ionics 282:63–69

    Article  CAS  Google Scholar 

  28. Knauth P (2009) Inorganic solid Li ion conductors: an overview. Solid State Ionics 180:911–916

    Article  CAS  Google Scholar 

  29. Granqvist CG (2012) Oxide electrochromics: an introduction to devices and materials. Sol Energy Mater Sol Cells 99:3

    Google Scholar 

  30. O’Brien NA, Gordon J, Mathew H, Hichwa BP (1999) Electrochromic coatings—applications and manufacturing issues. Thin Solid Films 345:312–318

    Article  Google Scholar 

  31. Bogati S, Georg A, Graf W (2017) Sputtered Si3N4 and SiO2 electron barrier layer between a redox electrolyte and the WO3 film in electrochromic devices. Sol Energy Mater Sol Cells 159:395–404

    Article  CAS  Google Scholar 

  32. Zhang J, Hu Y (2015) Higher chemical stability of α-Li3N than β-Li3N in atmosphere. Top Catal 58:386

    Article  CAS  Google Scholar 

  33. Sun Y, Li Y, Sun J, Li Y, Pei A, Cui Y (2017) Stabilized Li3N for efficient battery cathode prelithiation. Energy Storage Mater 6:119–124

    Article  Google Scholar 

  34. Zhang YJ, Wang W, Tang H, Bai WQ, Ge X, Wang XL, Gu CD, Tu JP (2015) An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries. J Power Sources 277:308–310

    Google Scholar 

  35. Tapia-Ruiz N, Segalés M, Gregory DH (2013) The chemistry of ternary and higher lithium nitrides. Coord Chem Rev 257:1987

    Article  Google Scholar 

  36. Lapp T, Skaarup S, Hooper A (1983) Ionic conductivity of pure and doped Li3N. Solid State Ionics 11:98

    Article  Google Scholar 

  37. Passerini S, Scrosati B, Gorenstein A (1990) The intercalation of lithium in nickel oxide and its electrochromic properties. J Electrochem Soc 137:3297

    Article  CAS  Google Scholar 

  38. Passerini S, Scarminio J, Scrosati B, Zane D, Decker F (1993) Thin metal oxide films on transparent substrates for Li-insertion devices. J Appl Electrochem 23:1187

    Article  CAS  Google Scholar 

  39. Passerini S, Scrosati B (1992) Electrochromism of thin-film nickel oxide electrodes. Solid State Ionics 53–56:520

    Article  Google Scholar 

  40. Wen RT, Niklasson GA, Granqvist CG (2014) Electrochromic nickel oxide films and their compatibility with potassium hydroxide and lithium perchlorate in propylene carbonate: optical, electrochemical and stress-related properties. Thin Solid Films 565:133

    Article  Google Scholar 

  41. Zhang J, Tu JP, Xia XH, Qiao Y, Lu Y (2009) An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte. Sol Energy Mater Sol Cells 93:1842

    Google Scholar 

  42. Ahn KS, Nah YC, Sung YE, Cho KY, Shin SS, Park JK (2002) All-solid-state electrochromic device composed of WO3 and Ni(OH)2 with a Ta2O5 protective layer. Appl Phys Lett 81:3930–3932

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the National Program on Key Research Project of China (2016YFB0303901), the Beijing Natural Science Foundation (2161001), and the Fundamental Research Funds for the Central Universities (Grant No. YWF-16-JCTD-B-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xungang Diao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Dong, G., Huang, Q. et al. Electro-optical performance of inorganic monolithic electrochromic device with a pulsed DC sputtered Li x Mg y N ion conductor. J Solid State Electrochem 22, 275–283 (2018). https://doi.org/10.1007/s10008-017-3742-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3742-9

Keywords

Navigation