Skip to main content
Log in

Analyzing leakage current in a direct methanol fuel cell

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A mathematical model is developed to study the transient leakage current in a direct methanol fuel cell (DMFC) system. The DMFC is divided into five sections—the anode backing layer (ABL), anode catalyst layer (ACL), membrane, cathode catalyst layer (CCL), and cathode backing layer (CBL). The concentration of methanol across the five layers is evaluated as a function of time, methanol feed concentration, temperature, and methanol flow rate. The transient behavior of leakage current is studied as a function of flow rate and current density. Potential drop across the membrane is found to play a significant role in the leakage current. However, the effect of potential drop across the membrane on the overall performance of a DMFC seems to be very limited. Polorization curves are simulated as function of time, temperature, and input methanol flow rate. Modeling results are compared with experimental data (variation of polarization curves with temperature) and found to compare very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Heinzel A, Barragan V (1999) A review of the state of the art of methanol crossover. J Power Sources 84:70–74

    Article  CAS  Google Scholar 

  2. Brenda G, Vijay S, Weidner J, White RE, Doughal R (2004) Mathematical model of a direct methanol fuel cell. J Fuel Cell Sci Technol 1:43–49

    Article  Google Scholar 

  3. Dohle H, Wippermann K (2004) Experimental evaluation and empirical modeling of methanol permeation of a DMFC. J Power Sources 135:152–164

    Article  CAS  Google Scholar 

  4. Murgia G, Pisani L, Shukla AK, Scott K (2003) A numerical validation of liquid feed DMFC. J Electrochem Soc 150:A1231–A1245

    Article  CAS  Google Scholar 

  5. Wang Z, Wang C (2003) Mathematical modeling of liquid feed DMFCs. J Electrochem Soc 150:A508–A519

    Article  CAS  Google Scholar 

  6. Eccarius S, Brenda HC, Weidner J (2008) Experimental validation on methanol crossover in DMFC. J Power Sources 179:723–733

    Article  CAS  Google Scholar 

  7. KJeang E, Goldak J, Gorliz MR, Gu J, James D, Kordesch (2006) A parametric study of methanol crossover. J Power Sources 153:89–99

    Article  CAS  Google Scholar 

  8. Zhang J, Wang Y (2004) Modeling the effects of methanol crossover on the DMFC. Fuel Cells. https://doi.org/10.1002/fuce.200400005

  9. Biswas MA, Crisalle OD, Mudiraj SP, Lear W (2005) Systematic approach for modeling methanol crossover on the anode side of a DMFC. Int J Hydrog Energy 39:8009–8025

    Article  Google Scholar 

  10. Meyers JP, Newman J (2002) Simulation of a direct methanol fuel cell. J Electrochem Soc 149:A729–A735

    Article  CAS  Google Scholar 

  11. Han J, Liu H (2007) Real time measurements of methanol crossover in a DMFC. J Power Sources 164:166–173

    Article  CAS  Google Scholar 

  12. Hikita S, Yamane K, Nakajima Y (2001) Measurement of methanol crossover in a direct methanol fuel cell. JSAE Rev 22:151–157

    Article  CAS  Google Scholar 

  13. Narayanan S.R, Chun W, Cropley C (1996) Proceedings of Annual Battery Conference on Applications and Advances: p. 113–118

  14. Tricoli V, Carretta N, Bartolozzi M (2000) A comparative investigation of proton and methanol transport in fluorinated ionomeric membranes. J Electrochem Soc 147:1286–1295

    Article  CAS  Google Scholar 

  15. Munichandraiah N, McGrath K, Prakash G, Aniszfeld R, Olah G (2003) A potentiometric method of monitoring methanol crossover through polymer electrolyte membranes of direct methanol fuel cells. J Power Sources 117:98–104

    Article  CAS  Google Scholar 

  16. Verdrugge MW (1989) Methanol diffusion in perfluorinated ion-exchange membranes. J Electrochem Soc 136:417423

    Google Scholar 

  17. Kauranen PS, Skou E (1996) Methanol permeability in perfluorosulfonate proton exchange membranes at elevated temperatures. J Appl Electrochem 26:909–915

    Article  CAS  Google Scholar 

  18. Kin TH, Shieh WY, Yang C, George Y (2006) Estimating the methanol crossover rate of PEM and the efficiency of DMFC via a current transient analysis. J Power Sources 161:1183–1186

    Article  CAS  Google Scholar 

  19. Cruickshank J, Scott K (1998) The degree and effect of methanol crossover in the direct methanol fuel cell. J Power Sources 70:40–47

    Article  CAS  Google Scholar 

  20. Kuver A, Potje-Kamloth K (1998) Comparative study of methanol crossover across electropolymerized and commercial proton exchange membrane electrolytes for the acid direct methanol fuel cell. Electrochim Acta 43:2527–2535

    Article  CAS  Google Scholar 

  21. Wang J, Wasmus S, Savinell F (1996) Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell. J Electrochem Soc 143:1233–1239

    Article  CAS  Google Scholar 

  22. Ramya K, Dhathatreyan KS (2003) Direct methanol fuel cells: determination of fuel crossover in a polymer electrolyte membrane. J Electroanal Chem 542:109–115

    Article  CAS  Google Scholar 

  23. Newman J, Thomas KE (2004) Electrochemical systems, 3rd edn. John Wiley and Sons, Hoboken

  24. Darshan S, Krishnamurthy B (2016) Transient analysis of DMFC anode. Electrochim Acta 191:317–328

    Article  Google Scholar 

  25. Casalegno A, Grassini P, Marchesi R (2007) Experimental analysis of DMFC crossover. Appl Therm Eng 27:748–754

    Article  CAS  Google Scholar 

  26. Casalegno A, Marchesi R, Rinaldi F (2007) Two phase 1 D model of a DMFC. J Fuel Cell Sci Technol 4:419–426

    Article  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge BITS Pilani, Hyderabad for the support for publishing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balaji Krishnamurthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, D., Krishnamurthy, B. Analyzing leakage current in a direct methanol fuel cell. J Solid State Electrochem 22, 203–216 (2018). https://doi.org/10.1007/s10008-017-3739-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3739-4

Keywords

Navigation