Skip to main content

Advertisement

Log in

Design and synthesis of ternary composite of polyaniline-sulfonated graphene oxide-TiO2 nanorods: a highly stable electrode material for supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Supercapacitor is an important energy storage device. Nature of electrode material plays an important role in the performance of supercapacitor. Carbon, metal oxide, and conducting polymer-based materials are being used as electrode materials. Each type of material has its own advantages and disadvantages. To improve the energy density and cycle life performance of conducting polymer, in this work, metal oxide (TiO2) and carbon (sulfonated graphene oxide) materials were incorporated on to polyaniline. Presence of polyaniline, titanium dioxide, and sulfonated graphene oxide in the composite material was supported by Fourier transform infrared, XRD, FE-SEM, and EDAX techniques. Composite material of nanorods with sphere morphology in excellent yield and reasonably good conductivity was obtained. Electrochemical performances of the composite material were carried by cyclic voltammetry, charge-discharge, and impedance measurements. Composite material showed much better performances than that of its individual components in terms of specific capacitance, energy density, power density, and cycle life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  2. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  3. Ramachandran R, Chen SM, Kumar GG (2015) An overview of electrochemical energy storage devices of various electrodes and morphological studies of supercapacitors. Int J Electrochem Sci 10:10355–10388

    CAS  Google Scholar 

  4. Ravi B, Rajender B, Palaniappan S (2015) Synthesis of highly crystalline polyaniline with the use of (cyclohexylamino)-1-propanesulfonic acid for supercapacitor. J Appl Electrochem 45:51–56

    Article  Google Scholar 

  5. Rajender B, Palaniappan S (2015) Organic solvent soluble methyltriphenylphosphonium peroxodisulfate: a novel oxidant for the synthesis of polyaniline and thus prepared polyaniline in high performance supercapacitor. New J Chem 39:5382–5388

    Article  CAS  Google Scholar 

  6. Guan H, Fan LZ, Zhang H, Qu X (2010) Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors. Electrochim Acta 56:964–968

    Article  CAS  Google Scholar 

  7. Feng X, Chen N, Zhou J, Li Y, Huang Z, Zhang L, Ma Y, Wang L, Yan X (2015) Facile synthesis of shape-controlled graphene–polyaniline composites for high performance supercapacitor electrode materials. New J Chem 39:2261–2268

    Article  CAS  Google Scholar 

  8. Luo Z, Zhu Y, Liu E, Hu T, Li Z, Liu T, Song L (2014) Synthesis of polyaniline/SnO2 nanocomposite and its improved electrochemical performance. Mater Res Bull 60:105–110

    Article  CAS  Google Scholar 

  9. Wang H, Ma L, Gan M, Zhou T, Sun X, Dai W, Wang H, Wang S (2016) Synthesis of polyaniline/HF partially etched-hierarchical porous TiO2 microspheres composite with high electrochemical performance for supercapacitors. J Solid State Electrochem 20:525–532

    Article  CAS  Google Scholar 

  10. Ramadoss A, Kim SJ (2013) Improved activity of a graphene–TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon 63:434–445

    Article  CAS  Google Scholar 

  11. Shen Y, Hu F, Yang Y, Xiao Y, Yan P, Li Z (2014) Effect of formaldehyde on the photochromic properties of ordered molybdenum oxide thin films produced by hydrothermal process. Surf Coat Technol 240:393–398

    Article  CAS  Google Scholar 

  12. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  13. Huang R, Shen Y, Zhao L, Yan M (2012) Effect of hydrothermal temperature on structure and photochromic properties of WO3 powder. Adv Powder Technol 23:211–214

    Article  CAS  Google Scholar 

  14. Hu F, Li W, Zhang J, Meng W (2014) Effect of graphene oxide as a dopant on the electrochemical performance of graphene oxide/polyaniline composite. J Mater Sci Technol 30:321–327

    Article  CAS  Google Scholar 

  15. Pal K, Panwar V, Bag S, Manuel J, Ahn JH, Kim JK (2015) Graphene oxide–polyaniline–polypyrrole nanocomposite for a supercapacitor electrode. RSC Adv 5:3005–3010

    Article  CAS  Google Scholar 

  16. Rana U, Malik S (2012) Graphene oxide/polyaniline nanostructures: transformation of 2D sheet to 1D nanotube and in situ reduction. Chem Commun 48:10862–10864

    Article  CAS  Google Scholar 

  17. Valles C, Jimenez P, Munoz E, Benito AM, Maser WK (2011) Simultaneous reduction of graphene oxide and polyaniline: doping-assisted formation of a solid-state charge-transfer complex. J Phys Chem C 115:10468–10474

    Article  CAS  Google Scholar 

  18. Firsich DW (1999) Carbon supercapacitor electrode materials. US Patent No. 5, 993,996A

  19. Armstrong AR, Armstrong G, Canales J, Bruce PG (2004) TiO2-B nanowires. Angew Chem Int Ed 43:2286–2288

    Article  CAS  Google Scholar 

  20. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  21. Jung CH, Hong JH, Jung JM, Hwang IT, Jung CH, Choi JH (2015) Preparation of sulfonated reduced graphene oxide by radiation induced chemical reduction of sulfonated graphene oxide. Carbon Lett 16:41–44

    Article  Google Scholar 

  22. Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes—a review. J Mater 2:37–54

    Google Scholar 

  23. Su SJ, Kuramoto N (2000) Processable polyaniline–titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Synth Met 114:147–153

    Article  CAS  Google Scholar 

  24. Meng Q, Cai K, Chen Y, Chen L (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285

    Article  CAS  Google Scholar 

  25. Eftekhari A, Li L, Yang Y (2017) Polyaniline supercapacitors. J Power Sources 347:86–107

    Article  CAS  Google Scholar 

  26. Zhan C, Yu G, Lu Y, Wang L, Wujcik E, Wei S (2017) Conductive polymer nanocomposites: a critical review of modern advanced devices. J Mater Chem C 5:1569–1585

    Article  CAS  Google Scholar 

  27. Wang H, Lin J, Shen ZX (2016) Polyaniline (PANi) based electrode materials for energy storage and conversion. J Sci: Adv Mater Devices 1:225–255

    Google Scholar 

  28. Lu J, Liu W, Ling H, Kong J, Ding G, Zhou D, Lu X (2012) Layer-by-layer assembled sulfonated-graphene/polyaniline nanocomposite films: enhanced electrical and ionic conductivities, and electrochromic properties. RSC Adv 2:10537–10543

    Article  CAS  Google Scholar 

  29. Sarah MSP, Musa MZ, Asiah MN, Rusop M (2010) Electrical conductivity characteristics of TiO2 thin film. In Electronic Devices, Systems and Applications (ICEDSA), IEEE, pp 361–364

    Google Scholar 

  30. Stejskal J, Hlavata D, Holler P, Trchova M, Prokes J, Sapurina I (2004) Polyaniline prepared in the presence of various acids: a conductivity study. Polym Int 53:294–300

    Article  CAS  Google Scholar 

  31. Mirmohseni A, Dorraji MS, Hosseini MG (2012) Influence of metal oxide nanoparticles on pseudocapacitive behavior of wet-spun polyaniline-multiwall carbon nanotube fibers. Electrochim Acta 70:182–192

    Article  CAS  Google Scholar 

  32. Vetrivel V, Rajendran K, Kalaiselvi V (2015) Synthesis and characterization of pure titanium dioxide nanoparticles by sol-gel method. Int J Chem Tech Res 7:1090–1097

    Google Scholar 

  33. Xiao H, Guo Y, Liang X, Qi C (2010) One-step synthesis of a novel carbon-based strong acid catalyst through hydrothermal carbonization. Monatsh Chem 141:929–932

    Article  CAS  Google Scholar 

  34. Bolagam R, Boddula R, Srinivasan P (2017) Hybrid material of PANI with TiO2-SnO2: pseudocapacitor electrode for higher performance supercapacitors. Chem Select 2:65–73

    CAS  Google Scholar 

  35. El-Deen AG, Choi JH, Kim CS, Khalil KA, Almajid AA, Barakat NA (2015) TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization. Desalination 361:53–64

    Article  CAS  Google Scholar 

  36. Li J, Wan W, Zhou H, Li J, Xu D (2011) Hydrothermal synthesis of TiO2 (B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries. Chem Commun 47:3439–3441

    Article  CAS  Google Scholar 

  37. Javed SI, Hussain Z (2015) Covalently functionalized graphene oxide–characterization and its electrochemical performance. Int J Electrochem Sci 10:9475–9487

    CAS  Google Scholar 

  38. Feng K, Tang B, Wu P (2014) Sulfonated graphene oxide–silica for highly selective Nafion-based proton exchange membranes. J Mater Chem A 2:16083–16092

    Article  CAS  Google Scholar 

  39. Lai C, Li GR, Dou YY, Gao XP (2010) Mesoporous polyaniline or polypyrrole/anatase TiO2 nanocomposite as anode materials for lithium-ion batteries. Electrochim Acta 55:4567–4572

    Article  CAS  Google Scholar 

  40. Rajender B, Palaniappan S (2015) Simultaneous oxidation and doping of aniline to polyaniline by oxidative template: electrochemical performance in supercapacitor. Int J Polym Mater 64:939–945

    Article  CAS  Google Scholar 

  41. Wei H, Zhu J, Wu S, Wei S, Guo Z (2013) Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer 54:1820–1831

    Article  CAS  Google Scholar 

  42. Jia Q, Wang W, Zhao J, Xiao J, Lu L, Fan H (2017) Synthesis and characterization of TiO2/polyaniline/graphene oxide bouquet-like composites for enhanced microwave absorption performance. J Alloys Compd 710:717–724

    Article  CAS  Google Scholar 

  43. Pieta P, Obraztsov I, D’Souza F, Kutner W (2013) Composites of conducting polymers and various carbon nanostructures for electrochemical supercapacitors. ECS J Solid State Sci Technol 2:M3120–M3134

    Article  CAS  Google Scholar 

  44. Li J, Ren Y, Ren Z, Wang S, Qiu Y, Yu J (2015) Aligned polyaniline nanowires grown on the internal surface of macroporous carbon for supercapacitors. J Mater Chem A 3:23307–23315

    Article  CAS  Google Scholar 

  45. Xu G, Wang N, Wei J, Lv L, Zhang J, Chen Z, Xu Q (2012) Preparation of graphene oxide/polyaniline nanocomposite with assistance of supercritical carbon dioxide for supercapacitor electrodes. Ind Eng Chem Res 51:14390–14398

    Article  CAS  Google Scholar 

  46. Bolagam R, Boddula R, Srinivasan P (2017) One-step preparation of sulfonated carbon and subsequent preparation of hybrid material with polyaniline salt: a promising supercapacitor electrode material. J Solid State Electrochem 21:1313–1322

    Article  CAS  Google Scholar 

  47. Chen Z, Yu D, Xiong W, Liu P, Liu Y, Dai L (2014) Graphene-based nanowire supercapacitors. Langmuir 30:3567–3671

    Article  CAS  Google Scholar 

  48. Hu Z, Zu L, Jiang Y, Lian H, Liu Y, Li Z, Chen F, Wang X, Cui X (2015) High specific capacitance of polyaniline/mesoporous manganese dioxide composite using KI-H2SO4 electrolyte. Polymers 7:1939–1953

    Article  CAS  Google Scholar 

  49. Bolagam R, Srinivasan P (2017) Use of oil in the polymerization of aniline to polyaniline salt containing dual dopants, sulfuric acid, and castor oil: material for high-performance supercapacitor. Ionics 23:1277–1284

    Article  CAS  Google Scholar 

  50. Boddula R, Srinivasan P (2015) Role of dual dopants in highly ordered crystalline polyaniline nanospheres: electrode materials in supercapacitors. J Appl Polym Sci 132:42510

    Article  Google Scholar 

  51. Zhang L, Huang D, Hu N, Yang C, Li M, Wei H, Yang Z, Su Y, Zhang Y (2017) Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors. J Power Sources 342:1–8

    Article  CAS  Google Scholar 

  52. Xiao F, Yang S, Zhang Z, Liu H, Xiao J, Wan L, Luo J, Wang S, Liu Y (2015) Scalable synthesis of freestanding sandwich-structured graphene/polyaniline/graphene nanocomposite paper for flexible all-solid-state supercapacitor. Sci Rep 5:9359

    Article  CAS  Google Scholar 

  53. Xu J, Wang K, Zu SZ, Han BH, Wei Z (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4:5019–5026

    Article  CAS  Google Scholar 

  54. Ravi B, Rajender B, Palaniappan S (2016) Improving the electrochemical performance by sulfonation of polyaniline-graphene-silica composite for high performance supercapacitor. Int J Polym Mater 65:835–840

    Article  CAS  Google Scholar 

  55. Mondal S, Rana U, Malik S (2017) Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. J Phys Chem C 121:7573–7583

    Article  Google Scholar 

  56. Hosseini MG, Shahryari E (2017) Fabrication of novel solid-state supercapacitor using a Nafion polymer membrane with graphene oxide/multiwalled carbon nanotube/polyaniline. J Solid State Electrochem 1–16. https://doi.org/10.1007/s10008-017-3606-3

  57. Parveen N, Ansari MO, Han TH, Cho MH (2017) Simple and rapid synthesis of ternary polyaniline/titanium oxide/graphene by simultaneous TiO2 generation and aniline oxidation as hybrid materials for supercapacitor applications. J Solid State Electrochem 21:57–68

    Article  CAS  Google Scholar 

  58. Liu D, Du P, Wei W, Wang H, Wang Q, Liu P (2017) Flexible and robust sandwich-structured S-doped reduced graphene oxide/carbon nanotubes/polyaniline (S-rGO/CNTs/PANI) composite membranes: excellent candidate as free-standing electrodes for high-performance supercapacitors. Electrochim Acta 233:201–209

    Article  CAS  Google Scholar 

  59. Wang R, Han M, Zhao Q, Ren Z, Guo X, Xu C, Hu N, Lu L (2017) Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Sci Rep 7:44562

    Article  CAS  Google Scholar 

  60. Wang L, Ye Y, Lu X, Wen Z, Li Z, Hou H, Song Y (2013) Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors. Sci Rep 3:3568

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CSIR, New Delhi, under the TAPSUN program (NWP-0056) for funding. The authors thank Dr. S. Chandrasekhar, Director, and Dr. T. Shekharam, Head, P&FM Division, IICT, for their support and encouragement. Authors also thank Dr. Vijayamohanan K. Pillai, Director, and Dr. S. Gopukumar, Senior Principal Scientist, CSIR-CECRI, Karaikudi, for their valuable suggestions. Ravi and Rajender are indebted to UGC, India, for Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palaniappan Srinivasan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolagam, R., Boddula, R. & Srinivasan, P. Design and synthesis of ternary composite of polyaniline-sulfonated graphene oxide-TiO2 nanorods: a highly stable electrode material for supercapacitor. J Solid State Electrochem 22, 129–139 (2018). https://doi.org/10.1007/s10008-017-3732-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3732-y

Keywords

Navigation