Skip to main content
Log in

Coupled electrochemical-chemical procedure used in construction of molecularly imprinted polymer-based electrode: a highly sensitive impedimetric melamine sensor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel molecularly imprinted sensor was fabricated and used for the impedimetric detection of melamine. Considering the identity of polymeric film and the pK a of a melamine template, an effective procedure was established to construct the MIP-based melamine sensor. The proposed method is based on the electropolymerization of pyrrole (Py) in the presence of melamine on the electrochemically reduced graphene oxide modified glassy carbon electrode (ERGO/GCE), followed by treatment with the solution of 1% H2O2 in alkaline water/CH3CN-mixed solvents. The surface morphology and the electrical feature of molecularly imprinted polymer (MIP) were characterized by scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FTIR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The EIS was also utilized to transduce the change of charge transfer resistance (R ct) at the interface of polymer film-electrolyte, after subsequent incubation of electrode in the solution containing different concentrations of analyte, and consequently, a linear response was obtained over the range of 4.0 to 240 nM with a detection limit of 0.83 nM (S/N = 3). The effect of possible interferences on the response of sensor was studied, and the results confirmed the good selectivity of the proposed device for melamine assay. The MIP sensor was successfully applied to determine melamine in a multiple concentration-spiked milk sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Parizanganeh A, Poorjafari N, Zamani A, Mohseni M (2015) Int J Environ Sci Technol 12:1003–1010

    Article  Google Scholar 

  2. Kim B (2009) Analysis of melamine and cyanuric acid by liquid chromatography with diode array detection and tandem mass spectrometry. Electronic Theses and Dissertations Fogler Library. DigitalCommons@UMaine, The University of Maine, Publication number 3364705.

  3. Tracy M (2010) The mutability of melamine: a transductive account of a scandal (respond to this article at http://www. therai. org. uk/at/debate). Anthropol Today 26:4–8

    Article  Google Scholar 

  4. Dalal RP, Goldfarb DS (2011) Melamine-related kidney stones and renal toxicity. Nat Rev Nephrol 7:267–274

    Article  CAS  Google Scholar 

  5. Bretterbauer K, Schwarzinger C (2012) Melamine derivatives—a review on synthesis and application. Curr Org Synth 9:342–356

    Article  CAS  Google Scholar 

  6. Yokley RA, Mayer LC, Rezaaiyan R, Manuli ME, Cheung MW (2000) Analytical method for the determination of cyromazine and melamine residues in soil using LC-UV and GC-MSD. J Agric Food Chem 48:3352–3358

    Article  CAS  Google Scholar 

  7. Zhu X, Wang S, Liu Q, Xu Q, Xu S, Chen H (2009) Determination of residues of cyromazine and its metabolite, melamine, in animal-derived food by gas chromatography−mass spectrometry with derivatization. J Agric Food Chem 57:11075–11080

    Article  CAS  Google Scholar 

  8. Mauer LJ, Chernyshova AA, Hiatt A, Deering A, Davis R (2009) Melamine detection in infant formula powder using near-and mid-infrared spectroscopy. J Agric Food Chem 57:3974–3980

    Article  CAS  Google Scholar 

  9. Yang S et al (2009) Detection of melamine in milk products by surface desorption atmospheric pressure chemical ionization mass spectrometry. Anal Chem 81:2426–2436

    Article  CAS  Google Scholar 

  10. Lachenmeier DW, Humpfer E, Fang F, Schütz B, Dvortsak P, Sproll C, Spraul M (2009) NMR-spectroscopy for nontargeted screening and simultaneous quantification of health-relevant compounds in foods: the example of melamine. J Agric Food Chem 57:7194–7199

    Article  CAS  Google Scholar 

  11. Chen Z, Yan X (2009) Simultaneous determination of melamine and 5-hydroxymethylfurfural in milk by capillary electrophoresis with diode array detection. J Agric Food Chem 57:8742–8747

    Article  CAS  Google Scholar 

  12. Guo Z, Gai P, Hao T, Wang S, Wei D, Gan N (2011) Determination of melamine in dairy products by an electrochemiluminescent method combined with solid-phase extraction. Talanta 83:1736–1741

    Article  CAS  Google Scholar 

  13. Wang Z, Chen D, Gao X, Song Z (2009) Subpicogram determination of melamine in milk products using a luminol− myoglobin chemiluminescence system. J Agric Food Chem 57:3464–3469

    Article  CAS  Google Scholar 

  14. Tittlemier S (2010) Methods for the analysis of melamine and related compounds in foods: a review. Food Addit Contam 27:129–145

    Article  CAS  Google Scholar 

  15. Han C, Li H (2010) Visual detection of melamine in infant formula at 0.1 ppm level based on silver nanoparticles. Analyst 135:583–588

    Article  CAS  Google Scholar 

  16. Li L, Li B, Cheng D, Mao L (2010) Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe. Food Chem 122:895–900

    Article  CAS  Google Scholar 

  17. Cao Q, Zhao H, Zeng L, Wang J, Wang R, Qiu X, He Y (2009) Electrochemical determination of melamine using oligonucleotides modified gold electrodes. Talanta 80:484–488

    Article  CAS  Google Scholar 

  18. Cao Q, Zhao H, He Y, Ding N, Wang J (2010) Electrochemical sensing of melamine with 3, 4-dihydroxyphenylacetic acid as recognition element. Anal Chim Acta 675:24–28

    Article  CAS  Google Scholar 

  19. Zhu H, Zhang S, Li M, Shao Y, Zhu Z (2010) Electrochemical sensor for melamine based on its copper complex. Chem Commun 46:2259–2261

    Article  CAS  Google Scholar 

  20. Guan-Ping J, Bo Y, Zhen-Xin C, Xiu-Yu C, Ming Z, Chang Z (2011) Electrochemical behaviors and determination of melamine in neutral and acid aqueous media. J Solid State Electrochem 15:2653–2659

    Article  Google Scholar 

  21. Pietrzyk A, Kutner W, Chitta R, Zandler ME, D’Souza F, Sannicolo F, Mussini PR (2009) Melamine acoustic chemosensor based on molecularly imprinted polymer film. Anal Chem 81:10061–10070

    Article  CAS  Google Scholar 

  22. Liu YT et al (2011) Electrochemical sensor based on a poly (para-aminobenzoic acid) film modified glassy carbon electrode for the determination of melamine in milk. Electrochim Acta 56:4595–4602

    Article  CAS  Google Scholar 

  23. Liang R, Zhang R, Qin W (2009) Potentiometric sensor based on molecularly imprinted polymer for determination of melamine in milk. Sensors Actuators B Chem 141:544–550

    Article  CAS  Google Scholar 

  24. Wu B, Wang Z, Zhao D, Lu X (2012) A novel molecularly imprinted impedimetric sensor for melamine determination. Talanta 101:374–381

    Article  CAS  Google Scholar 

  25. Huynh T-P, Pieta P, D’Souza F, Kutner W (2013) Molecularly imprinted polymer for recognition of 5-fluorouracil by RNA-type nucleobase pairing. Anal Chem 85:8304–8312

    Article  CAS  Google Scholar 

  26. Piletsky S, Piletskaya E, Sergeyeva T, Panasyuk T, El'Skaya A (1999) Molecularly imprinted self-assembled films with specificity to cholesterol. Sensors Actuators B Chem 60:216–220

    Article  CAS  Google Scholar 

  27. Haupt K (2001) Molecularly imprinted polymers in analytical chemistry. Analyst 126:747–756

    Article  CAS  Google Scholar 

  28. Özcan L, Şahin Y (2007) Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode. Sensors Actuators B Chem 127:362–369

    Article  Google Scholar 

  29. Sharma PS, Pietrzyk-Le A, D’Souza F, Kutner W (2012) Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal Bioanal Chem 402:3177–3204

    Article  CAS  Google Scholar 

  30. Vernitskaya TV, Efimov ON (1997) Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ Chem Rev 66:443–457

    Article  Google Scholar 

  31. Ratautaite V, Janssens SD, Haenen K, Nesládek M, Ramanaviciene A, Baleviciute I, Ramanavicius A (2014) Molecularly imprinted polypyrrole based impedimentric sensor for theophylline determination. Electrochim Acta 130:361–367

    Article  CAS  Google Scholar 

  32. Deore B, CHEN Z, NAGAOKA T (1999) Overoxidized polypyrrole with dopant complementary cavities as a new molecularly imprinted polymer matrix. Anal Sci 15:827–828

    Article  CAS  Google Scholar 

  33. Ozkorucuklu SP, Sahin Y, Alsancak G (2008) Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole. Sensors 8:8463–8478

    Article  CAS  Google Scholar 

  34. Leonavicius K, Ramanaviciene A, Ramanavicius A (2011) Polymerization model for hydrogen peroxide initiated synthesis of polypyrrole nanoparticles. Langmuir 27:10970–10976

    Article  CAS  Google Scholar 

  35. Kong L, Jiang X, Zeng Y, Zhou T, Shi G (2013) Molecularly imprinted sensor based on electropolmerized poly (o-phenylenediamine) membranes at reduced graphene oxide modified electrode for imidacloprid determination. Sensors Actuators B Chem 185:424–431

    Article  CAS  Google Scholar 

  36. Zaidi SA, Shin JH (2014) Molecularly imprinted polymer electrochemical sensors based on synergistic effect of composites synthesized from graphene and other nanosystems. Int J Electrochem Sci 9:4598–4616

    Google Scholar 

  37. Thakur S, Karak N (2015) Alternative methods and nature-based reagents for the reduction of graphene oxide: a review. Carbon 94:224–242

    Article  CAS  Google Scholar 

  38. Jorcin J-B, Orazem ME, Pébère N, Tribollet B (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta 51:1473–1479

    Article  CAS  Google Scholar 

  39. Shamsipur M, Taherpour AA, Pashabadi A (2016) Interrupting the flux of delocalized electrons on a dibenzo-18-crown-6-embedded graphite sheet and its relative counteraction in the presence of potassium ions. Analyst 141:4227-4234

  40. Uygun ZO, Dilgin Y (2013) A novel impedimetric sensor based on molecularly imprinted polypyrrole modified pencil graphite electrode for trace level determination of chlorpyrifos. Sensors Actuators B Chem 188:78–84

    Article  CAS  Google Scholar 

  41. Cote LJ, Kim F, Huang J (2008) Langmuir−Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043–1049

    Article  Google Scholar 

  42. Guo H-L, Wang X-F, Qian Q-Y, Wang F-B, Xia X-H (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659

    Article  CAS  Google Scholar 

  43. Syritski V, Reut J, Menaker A, Gyurcsányi RE, Öpik A (2008) Electrosynthesized molecularly imprinted polypyrrole films for enantioselective recognition of l-aspartic acid. Electrochim Acta 53:2729–2736

    Article  CAS  Google Scholar 

  44. Shamsipur M, Pashabadi A, Taherpour AA, Hemmateenejad B, Khosousi T, Parvin MH (2016) Synthesis and characterization of glucose-capped CdSe quantum dots. Electrochemical and computational studies of corresponding carbon-ionic liquid electrode for quantitative determination of minoxidil. J Electroanal Chem 778:116–125

    Article  CAS  Google Scholar 

  45. Gupta VK, Yola ML, Özaltın N, Atar N, Üstündağ Z, Uzun L (2013) Molecular imprinted polypyrrole modified glassy carbon electrode for the determination of tobramycin. Electrochim Acta 112:37–43

    Article  CAS  Google Scholar 

  46. Schweiger B, Kim J, Kim YJ, Ulbricht M (2015) Electropolymerized molecularly imprinted polypyrrole film for sensing of clofibric acid. Sensors 15:4870–4889

    Article  CAS  Google Scholar 

  47. Wolfart F, Dubal DP, Vidotti M, Holze R, Gómez-Romero P (2016) Electrochemical supercapacitive properties of polypyrrole thin films: influence of the electropolymerization methods. J Solid State Electrochem 20:901–910

    Article  CAS  Google Scholar 

  48. Alshammary B, Walsh FC, Herrasti P, de Leon CP (2016) Electrodeposited conductive polymers for controlled drug release: polypyrrole. J Solid State Electrochem 20:839–859

    Article  CAS  Google Scholar 

  49. Xie C, Li H, Li S, Wu J, Zhang Z (2009) Surface molecular self-assembly for organophosphate pesticide imprinting in electropolymerized poly (p-aminothiophenol) membranes on a gold nanoparticle modified glassy carbon electrode. Anal Chem 82:241–249

    Article  Google Scholar 

  50. Li H, Xie C, Li S, Xu K (2012) Electropolymerized molecular imprinting on gold nanoparticle-carbon nanotube modified electrode for electrochemical detection of triazophos. Colloids Surf B Biointerfaces 89:175–181

    Article  CAS  Google Scholar 

  51. Hwang J-H, Pyo M (2007) pH-induced mass and volume changes of perchlorate-doped polypyrrole. Synth Met 157:155–159

    Article  CAS  Google Scholar 

  52. Yang J, Deng S, Lei J, Ju H, Gunasekaran S (2011) Electrochemical synthesis of reduced graphene sheet–AuPd alloy nanoparticle composites for enzymatic biosensing. Biosens Bioelectron 29:159–166

    Article  CAS  Google Scholar 

  53. Wang Y, Sotzing GA, Weiss R (2008) Preparation of conductive polypyrrole/polyurethane composite foams by in situ polymerization of pyrrole. Chem Mater 20:2574–2582

    Article  CAS  Google Scholar 

  54. Thombare J et al. (2013) Studies on electrochemically synthesized polypyrrole (Ppy) thin films for supercapacitor application. Conference in: Energy efficient technologies for sustainability (ICEETS), International Conference on. IEEE, 1064–1067

  55. Harvey D (2000) Modern analytical chemistry, vol 381. McGraw-Hill, New York

  56. Miller JC, Miller JN (1988) Statistics for analytical chemistry. John Wiley and Sons, New York

  57. Yu J, Zhang C, Dai P, Ge S (2009) Highly selective molecular recognition and high throughput detection of melamine based on molecularly imprinted sol–gel film. Anal Chim Acta 651:209–214

    Article  CAS  Google Scholar 

  58. Muñiz-Valencia R, Ceballos-Magaña SG, Rosales-Martinez D, Gonzalo-Lumbreras R, Santos-Montes A, Cubedo-Fernandez-Trapiella A, Izquierdo-Hornillos RC (2008) Method development and validation for melamine and its derivatives in rice concentrates by liquid chromatography. Application to animal feed samples. Anal Bioanal Chem 392:523–531

    Article  Google Scholar 

  59. Wu Y-T et al (2009) Determination of melamine in rat plasma, liver, kidney, spleen, bladder and brain by liquid chromatography–tandem mass spectrometry. J Chromatogr 1216:7595–7601

    Article  CAS  Google Scholar 

  60. Hong M et al (2009) Simultaneous determination of melamine, ammelide, ammeline, and cyanuric acid in milk and milk products by gas chromatography-tandem mass spectrometry. Biomed Environ Sci 22:87–94

    Article  Google Scholar 

  61. Rima J, Abourida M, Xu T, Cho IK, Kyriacos S (2009) New spectrophotometric method for the quantitative determination of melamine using Mannich reaction. J Food Compost Anal 22:689–693

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Shamsipur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsipur, M., Moradi, N. & Pashabadi, A. Coupled electrochemical-chemical procedure used in construction of molecularly imprinted polymer-based electrode: a highly sensitive impedimetric melamine sensor. J Solid State Electrochem 22, 169–180 (2018). https://doi.org/10.1007/s10008-017-3731-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3731-z

Keywords

Navigation