Skip to main content
Log in

Photoelectrochemical behavior of molybdenum-modified nanoparticulate hematite electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The preparation of molybdenum-modified hematite electrodes by means of chemical bath deposition and their photoelectrochemical behavior toward water oxidation are reported in this work. The addition of a molybdenum precursor to the bath solution for hematite deposition induces a remarkable change of morphology in the resulting film from (110)-oriented nanorods to polyhedral nanoparticles. Despite the resulting loss of order, by controlling the Mo/Fe molar ratio in the bath solution, a significant improvement of the water oxidation photocurrent is achieved compared to nanorod pristine hematite electrodes. Such a (photo)electrochemical enhancement is mainly explained by an effective surface state passivation in Mo-modified hematite films. FE-SEM, TEM, XRD, and XPS were employed for electrode structural and morphological characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gray HB (2009) Powering the planet with solar fuel. Nat Chem 1:7

    Article  CAS  Google Scholar 

  2. Liu Q, Asiri AM, Sun X (2014) Hematite nanorods array on carbon cloth as an efficient 3D oxygen evolution anode. Electrochem Commun 49:21–24

    Article  Google Scholar 

  3. Wang G, Ling Y, Wang H, Xihong L, Li Y (2014) Chemically modified nanostructures for photoelectrochemical water splitting. J Photochem Photobiol C Photochem Rev 18:35–51

    Article  CAS  Google Scholar 

  4. Bak T, Nowotny J, Rekas M, Sorrell C (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrog Energy 27:991–1022

    Article  CAS  Google Scholar 

  5. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  6. Fàbrega C, Murcia-López S, Monllor-Satoca D, Prades JD, Hernández-Alonso JR, Penelas G, Morante JR, Andreu T (2016) Efficient WO3 photoanodes fabricated by pulsed laser deposition for photoelectrochemical water splitting with high faradaic efficiency. Appl Catal B Environ 189:133–140

    Article  Google Scholar 

  7. Liew SL, Zhang Z, Goh TWG, Subramanian GS, Seng HID, Hor TSA, Luo HK, Chi DZ (2014) Yb-doped WO3 photocatalysts for water oxidation with visible light. Int J Hydrog Energy 39:4291–4298

    Article  CAS  Google Scholar 

  8. Cots A, Cibrev D, Bonete P, Gómez R (2016) Hematite nanorod electrodes modified with molybdenum: photoelectrochemical studies. Chem Electro Chem 4:585–593

    Google Scholar 

  9. Liu C, Sun J, Tang J, Yang P (2012) Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis. Nano Lett 12:5407–5411

    Article  CAS  Google Scholar 

  10. Bornoz P, Abdi FF, Tilley SD, Dam B, van de Krol R, Graetzel M, Sivula K (2014) A bismuth vanadate-cuprous oxide tandem cell for overall solar water splitting. J Phys Chem C 118:16959–16966

    Article  CAS  Google Scholar 

  11. Li Q, Bian J, Zhang N, Ng DHL (2015) Loading Ni(OH)2 on the Ti-doped hematite photoanode for photoelectrochemical water splitting. Electrochim Acta 155:383–390

    Article  CAS  Google Scholar 

  12. Oh H, Ryu H, Lee W (2015) Effects of copper precursor concentration on the growth of cupric oxide nanorods for photoelectrode using a modified chemical bath deposition method. J Alloys Compd 620:55–59

    Article  CAS  Google Scholar 

  13. Gurudayal D, Jeong D, Jin K, Ahn HY, Boix PP, Abdi FF, Mathews N, Nam KT, Wong LH (2016) Highly active MnO catalysts integrated onto Fe2O3 Nanorods for efficient water splitting. Adv Mater Interfaces 3:1600176

    Article  Google Scholar 

  14. Santamaria M, Terracina S, Konno Y, Habazaki H (2013) Physicochemical characterization and photoelectrochemical analysis of iron oxide films. J Solid State Electrochem 17:3005–3014

    Article  CAS  Google Scholar 

  15. Bai Z, Liu F, Liu J, Zhang Y (2017) Enhanced photoelectrochemical performance of n-Si/n-ZnO nanowire arrays using graphene interlayers. J Mater Sci 21:10497–10505

    Article  Google Scholar 

  16. Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4:432–449

    Article  CAS  Google Scholar 

  17. Gurudayal G, Chiam SY, Kumar MH, Bassi PS, Seng HL, Barber J, Wong LH (2014) Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese. ACS Appl Mater Interfaces 6:5852–5859

    Article  CAS  Google Scholar 

  18. Deng JJ, Pu AW, Li M, Gao J, Zhang H, Zhong J, Sun XH (2014) Hematite nanostructures for high efficient solar water splitting. IEEE-NANO 2014:75–78

    Google Scholar 

  19. Iordanova N, Dupuis M, Rosso KM (2005) Charge transport in metal oxides: a theoretical study of hematite α-Fe2O3. J Chem Phys 122:144305–144310

    Article  CAS  Google Scholar 

  20. Nakau T (1960) Electrical conductivity of α-Fe2O3. J Phys Soc Jpn 15:727

    Article  CAS  Google Scholar 

  21. Rosso KM, Smith DMA, Dupuis M (2003) An ab initio model of electron transport in hematite (α-Fe2O3) basal planes. J Chem Phys 118:6455–6466

    Article  CAS  Google Scholar 

  22. Cherepy NJ, Liston DB, Lovejoy JA, Deng H, Zhang JZ (1998) Ultrafast studies of photoexcited electron dynamics in γ- and α-Fe2O3 semiconductor nanoparticles. J Phys Chem B 102:770–776

    Article  CAS  Google Scholar 

  23. Joly AG, Williams JR, Chambers SA, Xiong G, Hess WP, Laman DM (2006) Carrier dynamics in α-Fe2O3 (0001) thin films and single crystals probed by femtosecond transient absorption and reflectivity. J Appl Phys 99:3–8

    Article  Google Scholar 

  24. Pendlebury SR, Barroso M, Cowan AJ, Sivula K, Tang J, Grätzel M, Klug D, Durrant JR (2011) Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. Chem Commun (Camb) 47:716–718

    Article  CAS  Google Scholar 

  25. Wang G, Ling Y, Wheeler DA, George KEN, Horsley K, Heske C, Zhang JZ, Li Y (2011) Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett 11:3503–3509

    Article  CAS  Google Scholar 

  26. Brillet J, Cornuz M, Le Formal F, Yum JH, Grätzel M, Sivula K (2010) Examining architectures of photoanode–photovoltaic tandem cells for solar water splitting. J Mater Res 25:17–24

    Article  CAS  Google Scholar 

  27. Shen S, Kronawitter CX, Wheeler DA, Guo P, Lindley SA, Jiang J, Zhang JZ, Guo L, Mao SS (2013) Physical and photoelectrochemical characterization of Ti-doped hematite photoanodes prepared by solution growth. J Mater Chem A 1:14498–14506

    Article  CAS  Google Scholar 

  28. Itoh K, Bockris JO (1984) Stacked thin-film photoelectrode using iron oxide. J Appl Phys 56:874–876

    Article  CAS  Google Scholar 

  29. Shen S, Kronawitter CX, Jiang J, Mao SS, Guo L (2012) Surface tuning for promoted charge transfer in hematite nanorod arrays as water-splitting photoanodes. Nano Res 5:327–336

    Article  CAS  Google Scholar 

  30. Shen S, Jiang J, Guo P, Kronawitter CX, Mao SS, Guo L (2012) Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes. Nano Energy 1:732–741

    Article  CAS  Google Scholar 

  31. Xi L, Chiam SY, Mak WF, Tran PD, Barber J, Loo SCJ, Wong LH (2013) A novel strategy for surface treatment on hematite photoanode for efficient water oxidation. Chem Sci 4:164–169

    Article  CAS  Google Scholar 

  32. Kalamaras E, Dracopoulos V, Sygelleou L, Lianos P (2016) Electrodeposited Ti-doped hematite photoanodes and their employment for photoelectrocatalytic hydrogen production in presence of ethanol. Chem Eng J 295:288–294

    Article  CAS  Google Scholar 

  33. Iervolino G, Tantis I, Sygellou L, Vaiano V, Sannino D, Lianos P (2017) Photocurrent increase by metal modification of Fe2O3 photoanodes and its effect on photoelectrocatalytic hydrogen production by degradation of organic substrates. Appl Surf Sci 400:176–183

    Article  CAS  Google Scholar 

  34. Chatman S, Pearce CI, Rosso KM (2015) Charge transport at Ti-doped hematite (001)/aqueous interfaces. Chem Mater 27:1665–1673

    Article  CAS  Google Scholar 

  35. Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y (2011) Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett 11:2119–2125

    Article  CAS  Google Scholar 

  36. Wang L, Lee C, Schmuki P (2013) Ti and Sn co-doped anodic α-Fe2O3 films for efficient water splitting. Electrochem Commun 30:21–25

    Article  Google Scholar 

  37. Park S, Kim HJ, Lee WC, Song HJ, Shin SS, Seo SW, Park HK, Lee S, Kim DW, Hong KS (2014) Sn self-doped α-Fe2O3 nanobranch arrays supported on a transparent, conductive SnO2 trunk to improve photoelectrochemical water oxidation. Int J Hydrog Energy 39:16459–16467

    Article  CAS  Google Scholar 

  38. Kleiman-Shwarsctein A, Hu YS, Forman AJ, Stucky GD, McFarland EW (2008) Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J Phys Chem C 112:15900–15907

    Article  CAS  Google Scholar 

  39. Miao C, Ji S, Xu G, Liu G, Zhang L, Ye C (2012) Micro-nano-structured Fe2O3:Ti/ZnFe2O4 heterojunction films for water oxidation. ACS Appl Mater Interfaces 4:4428–4433

    Article  CAS  Google Scholar 

  40. Cao D, Luo W, Li M, Feng J, Li Z, Zou Z (2013) A transparent Ti4+ doped hematite photoanode protectively grown by a facile hydrothermal method. CrystEngComm 15:2386–2391

    Article  CAS  Google Scholar 

  41. Fu Y, Dong CL, Lee WY, Chen J, Guo P, Zhao L, Shen S (2016) Nb-doped hematite nanorods for efficient solar water splitting: electronic structure evolution versus morphology alteration. Chem Nano Mat 2:704–711

    CAS  Google Scholar 

  42. Fu Y, Dong CL, Zhou Z, Lee WY, Chen J, Guo P, Zhao L, Shen S (2016) Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution. Phys Chem Chem Phys 18:3846–3853

    Article  CAS  Google Scholar 

  43. Pan H, Meng X, Cai J, Li S, Qin G (2015) 4D transition-metal doped hematite for enhancing photoelectrochemical activity: theoretical prediction and experimental confirmation. RSC Adv 5:19353–19361

    Article  CAS  Google Scholar 

  44. Beermann N, Vayssieres L, Lindquist SE, Hagfeldt A (2000) Photoelectrochemical studies of oriented nanorod thin films of hematite. J Electrochem Soc 147:2456–2461

    Article  CAS  Google Scholar 

  45. Gota S, Guiot E, Henriot M, Gautier-Soyer M (1999) Atomic-oxygen-assisted MBE growth of α-Fe2O3 on α-Al2O3(0001): metastable FeO(111)-like phase at subnanometer thicknesses. Phys Rev B 60:14387–14395

    Article  CAS  Google Scholar 

  46. Chowdari BVR, Tan KL, Chia WT, Gopalakrishnan R (1990) X-ray photoelectron spectroscopic studies of molybdenum phosphate glassy system. J Non-Cryst Solids 119:95–102

    Article  CAS  Google Scholar 

  47. Anwar M, Hogarth CA, Bulpett R (1989) Effect of substrate temperature and film thickness on the surface structure of some thin amorphous films of MoO3 studied by X-ray photoelectron spectroscopy (ESCA). J Mater Sci 24:3087–3090

    Article  CAS  Google Scholar 

  48. Björkstén U, Moser J, Grätzel M (1994) Photoelectrochemical studies on nanocrystalline hematite films. Chem Mater 6:858–863

    Article  Google Scholar 

  49. Formal F Le, Sivula K, Grätzel M (2012) The transient photocurrent and photovoltage behavior of a hematite photoanode under working conditions and the influence of surface treatments. J Phys Chem C 116:26707–26720

  50. Brookes C, Wells PP, Cibin G, Dimitratos N, Jones W, Morgan DJ, Bowker M (2014) Molybdenum oxide on Fe2O3 core–shell catalysts: probing the nature of the structural motifs responsible for methanol oxidation catalysis. ACS Catal 4:243–250

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the MINECO of Spain (project MAT2015-71727-R FONDOS FEDER). A. C. wants to thank the University of Alicante for a predoctoral grant. D. C. is also grateful to MINECO for the award of an FPI grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Gómez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cots, A., Cibrev, D., Bonete, P. et al. Photoelectrochemical behavior of molybdenum-modified nanoparticulate hematite electrodes. J Solid State Electrochem 22, 149–156 (2018). https://doi.org/10.1007/s10008-017-3729-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3729-6

Keywords

Navigation