Skip to main content
Log in

Oxygen reduction on electrodeposited silver catalysts in alkaline solution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, silver was electrochemically deposited onto glassy carbon (GC) substrate using constant potential regime and tested for oxygen reduction reaction (ORR) in alkaline media. The surface morphology of Ag/GC electrodes was studied by scanning electron microscopy (SEM). It was established that after 10 s of deposition, a number of Ag nanoparticles with the size of 15 nm are produced that grow to about 45 nm after 300 s of electrodeposition. The ORR studies were conducted in 0.1 M KOH solution employing the rotating disk electrode (RDE) method. The Tafel slope at low current densities for electrodeposited silver is in the range from −70 to −80 mV. The RDE measurements showed that the electron transfer number (n) is 3.5 for smaller amounts of electrodeposited Ag, and it increases with increasing the loading of Ag on the GC surface. These n values suggest that the electroreduction of oxygen on Ag/GC electrodes proceeds mainly to water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stacy J, Regmi YN, Leonard B, Fan MH (2017) The recent progress and future of oxygen reduction reaction catalysis: a review. Renew Sust Energ Rev 69:401–414

    Article  CAS  Google Scholar 

  2. Shao MH, Chang QW, Dodelet JP, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116:3594–3657

    Article  CAS  Google Scholar 

  3. Chatenet M, Genies-Bultel L, Aurousseau M, Durand R, Andolfatto F (2002) Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide—comparison with platinum. J Appl Electrochem 32:1131–1140

    Article  CAS  Google Scholar 

  4. Sleightholme AES, Varcoe JR, Kucernak AR (2008) Oxygen reduction at the silver/hydroxide-exchange membrane interface. Electrochem Commun 10:151–155

    Article  CAS  Google Scholar 

  5. Blizanac BB, Ross PN, Markovic NM (2006) Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: rotating ring disk(Ag(hkl)) studies. J Phys Chem B 110:4735–4741

    Article  CAS  Google Scholar 

  6. Alia SM, Duong K, Liu T, Jensen K, Yan YS (2012) Supportless silver nanowires as oxygen reduction reaction catalysts for hydroxide-exchange membrane fuel cells. ChemSusChem 5:1619–1624

    Article  CAS  Google Scholar 

  7. Lee CL, Tsai YL, Huang CH, Huang KL (2013) Performance of silver nanocubes based on electrochemical surface area for catalyzing oxygen reduction reaction. Electrochem Commun 29:37–40

    Article  CAS  Google Scholar 

  8. Wang QY, Cui XQ, Guan WM, Zhang L, Fan XF, Shi Z, Zheng WT (2014) Shape-dependent catalytic activity of oxygen reduction reaction (ORR) on silver nanodecahedra and nanocubes. J Power Sources 269:152–157

    Article  CAS  Google Scholar 

  9. Lee CL, Syu CC (2011) Electrochemical growth and oxygen reduction property of Ag nanosheet arrays on a Ti/TiO2 electrode. Int J Hydrog Energy 36:15068–15074

    Article  CAS  Google Scholar 

  10. Lee CL, Chiou HP, Syu CM, Wu CC (2010) Silver triangular nanoplates as electrocatalyst for oxygen reduction reaction. Electrochem Commun 12:1609–1613

    Article  CAS  Google Scholar 

  11. Guo JS, Hsu A, Chu D, Chen RR (2010) Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. J Phys Chem C 114:4324–4330

    Article  CAS  Google Scholar 

  12. Garcia AC, Gasparotto LHS, Gomes JF, Tremiliosi G (2012) Straightforward synthesis of carbon-supported Ag nanoparticles and their application for the oxygen reduction reaction. Electrocatalysis 3:147–152

    Article  CAS  Google Scholar 

  13. Singh P, Buttry DA (2012) Comparison of oxygen reduction reaction at silver nanoparticles and polycrystalline silver electrodes in alkaline solution. J Phys Chem C 116:10656–10663

    Article  CAS  Google Scholar 

  14. Chao YJ, Lyu YP, Wu ZW, Lee CL (2016) Seed-mediated growth of Ag nanocubes and their size-dependent activities toward oxygen reduction reaction. Int J Hydrog Energy 41:3896–3903

    Article  CAS  Google Scholar 

  15. Jiang RZ, Moton E, McClure JP, Bowers Z (2014) A highly active and alcohol-tolerant cathode electrocatalyst containing Ag nanoparticles supported on graphene. Electrochim Acta 127:146–152

    Article  CAS  Google Scholar 

  16. Xu XH, Tan C, Liu HJ, Wang F, Li ZL, Liu JJ, Ji J (2013) Carbon black supported ultra-high loading silver nanoparticle catalyst and its enhanced electrocatalytic activity towards oxygen reduction reaction in alkaline medium. J Electroanal Chem 696:9–14

    Article  CAS  Google Scholar 

  17. Neumann CCM, Laborda E, Tschulik K, Ward KR, Compton RG (2013) Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: efficiency limitation due to hydrogen peroxide escape. Nano Res 6:511–524

    Article  CAS  Google Scholar 

  18. Lim EJ, Choi SM, Seo MH, Kim Y, Lee S, Kim WB (2013) Highly dispersed Ag nanoparticles on nanosheets of reduced graphene oxide for oxygen reduction reaction in alkaline media. Electrochem Commun 28:100–103

    Article  CAS  Google Scholar 

  19. Wu QY, Diao P, Sun J, Jin T, Xu D, Xiang M (2015) Electrodeposition of vertically aligned silver nanoplate arrays on indium tin oxide substrates. J Phys Chem C 119:20709–20720

    Article  CAS  Google Scholar 

  20. Boskovic I, Mentus SV, Pjescic M (2006) Electrochemical behavior of an Ag/TiO2 composite surfaces. Electrochim Acta 51:2793–2799

    Article  CAS  Google Scholar 

  21. Pu LT, Li KX, Chen ZH, Zhang P, Zhang X, Fu Z (2014) Silver electrodeposition on the activated carbon air cathode for performance improvement in microbial fuel cells. J Power Sources 268:476–481

    Article  CAS  Google Scholar 

  22. Suryanto BHR, Gunawan CA, Lu XY, Zhao C (2012) Tuning the electrodeposition parameters of silver to yield micro/nano structures from room temperature protic ionic liquids. Electrochim Acta 81:98–105

    Article  CAS  Google Scholar 

  23. Salome S, Rego R, Oliveira MC (2013) Development of silver-gas diffusion electrodes for the oxygen reduction reaction by electrodeposition. Mater Chem Phys 143:109–115

    Article  CAS  Google Scholar 

  24. Innocenti M, Zafferoni C, Lavacchi A, Becucci L, Di Benedetto F, Carretti E, Vizza F, Foresti ML (2014) Electroactivation of microparticles of silver on glassy carbon for oxygen reduction and oxidation reactions. J Electrochem Soc 161:D3018–D3024

    Article  CAS  Google Scholar 

  25. Tiwari A, Nagaiah TC (2016) Dioxygen reduction by nitrogen-rich mesoporous carbon bearing electrodeposited silver particles. ChemCatChem 8:396–403

    Article  CAS  Google Scholar 

  26. Erikson H, Liik M, Sarapuu A, Marandi M, Sammelselg V, Tammeveski K (2013) Electrocatalysis of oxygen reduction on electrodeposited Pd coatings on gold. J Electroanal Chem 691:35–41

    Article  CAS  Google Scholar 

  27. Erikson H, Liik M, Sarapuu A, Kozlova J, Sammelselg V, Tammeveski K (2013) Oxygen reduction on electrodeposited Pd coatings on glassy carbon. Electrochim Acta 88:513–518

    Article  CAS  Google Scholar 

  28. Erikson H, Sarapuu A, Kozlova J, Matisen L, Sammelselg V, Tammeveski K (2015) Oxygen electroreduction on electrodeposited PdAu nanoalloys. Electrocatalysis 6:77–85

    Article  CAS  Google Scholar 

  29. Tammeveski L, Erikson H, Sarapuu A, Kozlova J, Ritslaid P, Sammelselg V, Tammeveski K (2012) Electrocatalytic oxygen reduction on silver nanoparticle/multi-walled carbon nanotube modified glassy carbon electrodes in alkaline solution. Electrochem Commun 20:15–18

    Article  CAS  Google Scholar 

  30. Linge JM, Erikson H, Sarapuu A, Merisalu M, Rähn M, Matisen L, Sammelselg V, Tammeveski K (2017) Electroreduction of oxygen on nitrogen-doped graphene oxide supported silver nanoparticles. J Electroanal Chem 794:197–203

    Article  CAS  Google Scholar 

  31. Yang XA, Gan LF, Zhu CZ, Lou BH, Han L, Wang J, Wang EK (2014) A dramatic platform for oxygen reduction reaction based on silver nanoclusters. Chem Commun 50:234–236

    Article  CAS  Google Scholar 

  32. Treshchalov A, Erikson H, Puust L, Tsarenko S, Saar R, Vanetsev A, Tammeveski K, Sildos I (2017) Stabilizer-free silver nanoparticles as efficient catalysts for electrochemical reduction of oxygen. J Colloid Interface Sci 491:358–366

    Article  CAS  Google Scholar 

  33. Wiberg GKH, Mayrhofer KJJ, Arenz M (2010) Investigation of the oxygen reduction activity on silver—a rotating disc electrode study. Fuel Cells 10:575–581

    Article  CAS  Google Scholar 

  34. Wiberg G, Mayhofer K, Arenz M (2009) Investigation of the oxygen reduction activity of non-platinum catalysts—a RDE methodology. ECS Trans 19:37–46

    Article  CAS  Google Scholar 

  35. Novikova VV, Starodubova SP, Chaika MY, Kravchenko TA (2013) Electroreduction of molecular oxygen on carbon electrode modified by dispersed silver. Russ J Electrochem 49:278–284

    Article  CAS  Google Scholar 

  36. Kirowa-Eisner E, Bonfil Y, Tzur D, Gileadi E (2003) Thermodynamics and kinetics of UPD of lead on polycrystalline silver and gold. J Electroanal Chem 552:171–183

    Article  CAS  Google Scholar 

  37. Wang T, Kaempgen M, Nopphawan P, Wee G, Mhaisalkar S, Srinivasan M (2010) Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc-air batteries. J Power Sources 195:4350–4355

    Article  CAS  Google Scholar 

  38. Lu YZ, Chen W (2012) Size effect of silver nanoclusters on their catalytic activity for oxygen electro-reduction. J Power Sources 197:107–110

    Article  CAS  Google Scholar 

  39. Ohyama J, Okata Y, Watabe N, Katagiri M, Nakamura A, Arikawa H, Shimizu K, Takeguchi T, Ueda W, Satsuma A (2014) Oxygen reduction reaction over silver particles with various morphologies and surface chemical states. J Power Sources 245:998–1004

    Article  CAS  Google Scholar 

  40. Campbell FW, Compton RG (2010) Contrasting underpotential depositions of lead and cadmium on silver macroelectrodes and silver nanoparticle electrode arrays. Int J Electrochem Sci 5:407–413

    CAS  Google Scholar 

  41. Davis RE, Horvath GL, Tobias CW (1967) The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions. Electrochim Acta 12:287–297

    Article  CAS  Google Scholar 

  42. Lide DR (2001) CRC handbook of chemistry and physics, 82nd edn. CRC Press, Boca Raton

    Google Scholar 

  43. Lu YZ, Wang YC, Chen W (2011) Silver nanorods for oxygen reduction: strong effects of protecting ligand on the electrocatalytic activity. J Power Sources 196:3033–3038

    Article  CAS  Google Scholar 

  44. Katsounaros I, Mayrhofer KJJ (2012) The influence of non-covalent interactions on the hydrogen peroxide electrochemistry on platinum in alkaline electrolytes. Chem Commun 48:6660–6662

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by institutional research funding (IUT20-16 and IUT2-24) of the Estonian Ministry of Education and Research. This research was also supported by the EU through the European Regional Development Fund (TK141 “Advanced materials and high-technology devices for energy recuperation systems”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaido Tammeveski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linge, J.M., Erikson, H., Kozlova, J. et al. Oxygen reduction on electrodeposited silver catalysts in alkaline solution. J Solid State Electrochem 22, 81–89 (2018). https://doi.org/10.1007/s10008-017-3724-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3724-y

Keywords

Navigation