Skip to main content
Log in

The electrochemical activity of two binary alloy catalysts toward oxygen reduction reaction in 0.1 M KOH

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The platinum group metals (Pt, Ir and Ru) and the carbide-derived carbon support with the very high specific surface area were used to synthesise the low noble metal loading Pt-C, IrPt-C and RuPt-C alloy catalysts. The alloying of the platinum group metals in the studied catalysts was proved by the several independent physical characterization methods like: the X-ray diffraction, time of flight secondary ion mass-spectrometry, X-ray photoelectron spectroscopy, scanning and transmission electron microscopy. The electrocatalytic activity toward oxygen reduction reaction of the synthesised catalysts in an alkaline solution was studied and compared with the commercially available Pt-Vulcan. The combined and detail approach using the transmission electron microscopy and inductively coupled plasma mass spectrometry for estimation of the surface area of metal particles is provided. The noticeably higher calculated mass corrected and specific kinetic current density values for Pt-C catalyst were established. For IrPt-C and RuPt-C alloy catalysts, mass corrected current density values are comparable with the commercial Pt-Vulcan. The specific kinetic current density values increase in the following sequence: RuPt-C < IrPt-C < Pt-Vulcan < Pt-C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Markovic NM, Ross PN Jr (1999) In: A. Wieckowski (Eds.) Interfacial electrochemistry, Ch. 46, Marcel Dekker Inc., NY, p 821

  2. Xu Y, Shao M, Mavrikakis M, Adzic RR (2009) In: Koper MTM (Eds.) Fuel cell catalysis: a surface science approach, Wiley-VCH, Hoboken, p 271

  3. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56:9–35

    Article  CAS  Google Scholar 

  4. He Q, Cairns EJ (2015) Review—recent progress in electrocatalysts for oxygen reduction suitable for alkaline anion exchange membrane fuel cells. J Electrochem Soc 162(14):F1504–F1539

    Article  CAS  Google Scholar 

  5. Ge X, Sumboja A, Wuu D, An T, Li B, Goh FWT, Hor TSA, Zong Y, Liu Z (2015) Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal 5:4643–4667

    Article  CAS  Google Scholar 

  6. Durst J, Siebel A, Simon C, Hasché F, Herranz J, Gasteiger HA (2014) New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci 7:2255–2260

    Article  CAS  Google Scholar 

  7. Durst J, Simon C, Hasché F, Gasteiger HA (2015) Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd Electrocatalysts in acidic media. J Electrochem Soc 162(1):F190–F203

    Article  CAS  Google Scholar 

  8. Escalante-Garcia IL, Duron-Torres SM, Cruz JC, Arriago-Hurtado LG (2010) Electrochemical characterization of IrO2-Pt and RuO2-Pt mixtures as bifunctional electrodes for unitized regenerative fuel cells. J New Mater Electrochem Syst 13(3):227–233

    CAS  Google Scholar 

  9. Anderson AB, Roques J, Mukerjee S, Murthi VS, Markovic NM, Stamenkovic V (2005) Activation energies for oxygen reduction on platinum alloys: theory and experiment. J Phys Chem B 109:1198–1203

    Article  CAS  Google Scholar 

  10. Radev I, Topalov G, Lefterova E, Ganske G, Schnakenberg U, Tsotridis G, Slavcheva E (2012) Optimization of platinum/iridium ratio in thin sputtered films for PEMFC cathodes. Int J Hydrogen Energ 37:7730–7735

    Article  CAS  Google Scholar 

  11. Nilekar AU, Xu Y, Zhang JL, Vukmirovic MB, Sasaki K, Adzic RR, Mavrikakis M (2007) Bimetallic and ternary alloys for improved oxygen reduction catalysis. Top Catal 46:276–284

    Article  CAS  Google Scholar 

  12. Rand DAJ, Woods R (1974) Cyclic voltammetric studies in iridium electrodes in sulphuric acid solutions: nature of oxygen layer and metal dissolution. J Electroanal Chem 55(3):375–381

    Article  CAS  Google Scholar 

  13. Lee K, Zhang L, Zhang J (2007) IrxCo1-x (x=0.3-1.0) alloy electrocatalysts, catalytic activities, and methanol tolerance in oxygen reduction reaction. J Power Sources 170:291–296. doi:10.1016/j.jpowsour.2007.04.043

    Article  CAS  Google Scholar 

  14. Ross PN (1991) Characterization of alloy electrocatalysts for direct oxidation of methanol: new methods. Electrochim Acta 36:2053–2062

    Article  CAS  Google Scholar 

  15. Hills CW, Nashner MS, Frenkel AI, Shapley JR, Nuzzo RG (1999) Carbon support effects on bimetallic Pt-Ru nanoparticles formed from molecular precursors. Langmuir 15:690–700

    Article  CAS  Google Scholar 

  16. Prakash J, Joachin H (2000) Electrocatalytic activity of ruthenium for oxygen reduction in alkaline solution. Electrochim Acta 45:2289–2296

    Article  CAS  Google Scholar 

  17. Suntivich J, Gasteiger HA, Yabuuchi N, Shao-Horn Y (2010) Electrocatalytic measurement methodology of oxide catalysts using a thin-film rotating disk electrode. J Electrochem Soc 157:B1263–B1268

    Article  CAS  Google Scholar 

  18. Poux T, Napolskiy F, Dintzer T, Kéranguéven G, Istomin SY, Tsirlina G, Antipov E, Savinova E (2012) Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction. Catal Today 189:83–92

    Article  CAS  Google Scholar 

  19. Singh RN, Awasthi R, Sharma CS (2014) Review: an overview of recent development of platinum-based cathode materials for direct methanol fuel cells. Int J Electrochem Sci 9:5607–5639

    Google Scholar 

  20. Antolini E (2003) Formation of carbon-supported PtM alloys for low temperature fuel cells: a review. Mater Chem Phys 78:563–573

    Article  CAS  Google Scholar 

  21. Lee I, Morales R, Albiter MA, Zaera F (2008) Synthesis of heterogeneous catalysts with well shaped platinum particles to control reaction selectivity. PNAS 105(40):15241–15246

    Article  CAS  Google Scholar 

  22. Meier JC, Galeano C, Katsounaros I, Witte J, Bongard HJ, Topalov AA, Baldizzone C, Mezzavilla S, Schüth F, Mayrhofer KJJ (2014) Design criteria for stable Pt/C fuel cell catalysts. Beilstein J Nanotechnol 5:44–67

    Article  Google Scholar 

  23. Kruusenberg I, Leis J, Arulepp M, Tammeveski K (2010) Oxygen reduction on carbon nanomaterial-modified glassy carbon electrodes in alkaline solution. J Solid State Electrochem 14:1269–1277

    Article  CAS  Google Scholar 

  24. Lilloja J, Kibena-Põldsepp E, Merisalu M, Rauwel P, Matisen L, Niilisk A, Cardoso ESF, Maia G, Sammelselg V, Tammeveski K (2016) An oxygen reduction study of Graphene-based nanomaterials of different origin. Catalysts 6(7):108–125

    Article  Google Scholar 

  25. Härk E, Jäger R, Lust E (2015) Effect of platinum nanoparticle loading on oxygen reduction at Pt nanocluster activated microporous-mesoporous carbon support. Electrocatalysis 6:242–254

    Article  Google Scholar 

  26. Jäger R, Härk E, Romann T, Joost U, Lust E (2016) C(Mo2C) and Pt–C(Mo2C) based mixed catalysts for oxygen reduction reaction. J Electroanal Chem 761:89–97

    Article  Google Scholar 

  27. Jänes A, Thomberg T, Kurig H, Lust E (2009) Nanoscale fine-tuning of porosity of carbide-derived carbon prepared from molybdenum carbide. Carbon 47:23–29

    Article  Google Scholar 

  28. Lüsi M, Erikson H, Sarapuu A, Tammeveski K, Solla-Gullón J, Feliu JM (2016) Oxygen reduction reaction on carbon-supported palladium nanocubes in alkaline media. Electrochem Commun 64:9–13

    Article  Google Scholar 

  29. Erikson H, Sarapuu A, Kozlova J, Matisen L, Sammelselg V, Tammeveski K (2015) Oxygen electroreduction on electrodeposited PdAu nanoalloys. Electrocatalysis 6:77–85

    Article  CAS  Google Scholar 

  30. Vaarmets K, Sepp S, Nerut J, Härk E, Tallo I, Lust E (2013) Electrochemical and physical characterization of Pt–Ru alloy catalyst deposited onto microporous–mesoporous carbon support derived from Mo2C at 600 °C. J Solid State Electrochem 17(6):1729–1741

    Article  CAS  Google Scholar 

  31. Lust E, Härk E, Nerut J, Vaarmets K (2013) Pt and Pt–Ru catalysts for polymer electrolyte fuel cells deposited onto carbide derived carbon supports. Electrochim Acta 101:130–141

    Article  CAS  Google Scholar 

  32. Härk E, Sepp S, Valk P, Vaarmets K, Nerut J, Jäger R, Lust E (2013) Impact of the various catalysts (Pt, Pt-Ru) deposited onto carbon support to the slow oxygen reduction reaction kinetics. ECS Trans 45(21):1–11

    Article  Google Scholar 

  33. Jäger R, Kasatkin PE, Härk E, Lust E (2013) Oxygen reduction on molybdenum carbide derived micromesoporous carbon electrode in alkaline solution. Electrochem Commun 35:97–99

    Article  Google Scholar 

  34. Härk E, Jäger R, Lust E (2014) Oxygen electrocatalysis on the Pt-modified carbon: influence of KOH concentration. ECS Trans 59(1):137–144

    Article  Google Scholar 

  35. Jäger R, Härk E, Kasatkin PE, Lust E (2014) Investigation of a carbon-supported Pt electrode for oxygen reduction reaction in 0.1M KOH aqueous solution. J Electrochem Soc 161(9):F861–F867

    Article  Google Scholar 

  36. Álvarez G, Alcaide F, Miguel O, Calvillo L, Lázaro MJ, Quintana JJ, Calderón JC, Pastor E, Esparbé I (2010) Technical electrodes catalyzed with PtRu on mesoporous ordered carbons for liquid direct methanol fuel cells. J Solid State Electrochem 14:1027–1034

    Article  Google Scholar 

  37. Chai GS, Yoon SB, Yu J-S, Choi J-H, Sung Y-E (2004) Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell. J Phys Chem B 108:7074–7079

    Article  CAS  Google Scholar 

  38. Lakshminarayanan V, Srinivasan R, Chu D, Gilman S (1997) Area determination in fractal surfaces of Pt and Pt-Ru electrodes. Surf Sci 392:44–51

    Article  CAS  Google Scholar 

  39. Sasaki K, Mo Y, Wang JX, Balasubramanian M, Uribe F, McBreen J, Adžić RR (2003) Pt submonolayers on metal nanoparticles/novel electrocatalysts for H2 oxidation and O2 reduction. Electrochim Acta 48:3841–3849

    Article  CAS  Google Scholar 

  40. Carmo M, Paganin VA, Rosolen JM, Gonzalez ER (2005) J Power Sources 142:169–176

    Article  CAS  Google Scholar 

  41. Seah MP, Gilmore IS, Spencer SJ (2001) Quantitative XPS: I. Analysis of x-ray photoelectron intensities from elemental data in a digital photoelectron database. J Electron Spectrosc Relat Phenom 120:93–111

    Article  CAS  Google Scholar 

  42. Fairley N CasaXPSversion 2.3.12 http://www.casaxps.com

  43. Şen F, Gökaǧaç G (2007) Different sized platinum nanoparticles supported on carbon: an XPS study on these methanol oxidation catalysts. J Phys Chem C 111:5715–5720

    Article  Google Scholar 

  44. Giorgi R, Ascarelli P, Turtù S, Contini V (2001) Nanosized metal catalysts in electrodes for solid polymeric electrolyte fuel cells: an XPS and XRD study. Appl Surf Sci 178:149–155

    Article  CAS  Google Scholar 

  45. NIST X-ray Photoelectron Spectroscopy Database®, NIST Standard Reference Database 20, Version 4.1, http://srdata.nist.gov/xps/

  46. Antolini E, Giorgi L, Cardellini F, Passalacqua E (2001) Physical and morphological characteristics and electrochemical behaviour in PEM fuel cells of PtRu/C catalysts. J Solid State Electrochem 5:131–140

    Article  CAS  Google Scholar 

  47. Antolini E, Cardellini F (2001) Formation of carbon supported PtRu alloys: an XRD analysis. J Alloys Compd 315:118–122

    Article  CAS  Google Scholar 

  48. Cho YH, Park HS, Cho YH, Jung DS, Park HY, Sung YE (2007) Effect of platinum amount in carbon supported platinum catalyst on performance of polymer electrolyte membrane fuel cell. J Power Sources 172:89–93

    Article  CAS  Google Scholar 

  49. Watanabe M, Sei H, Stonehart P (1989) The influence of platinum crystallite size on the electroreduction of oxygen. J Electroanal Chem 261:375–387

    Article  CAS  Google Scholar 

  50. Jäger R, Härk E, Kasatkin PE, Pikma P, Joost U, Paiste P, Aruväli J, Kallio T, Jiang H, Lust E (2017) J Electrochem Soc 164(4):F448–F453

    Article  Google Scholar 

  51. Adžić RR (1998) In: Lipkowski J, Ross PN (Eds.) Electrocatalysis. Wiley-VCH, NY, p 197

  52. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. Wiley, NY, p 864

    Google Scholar 

Download references

Acknowledgements

This work was supported by the EU through the European Regional Development Fund under projects TK141 “Advanced materials and high-technology devices for energy recuperation systems” (2014-2020.4.01.15-0011), NAMUR “Nanomaterials—research and applications” (3.2.0304.12-0397), the Estonian institutional research grant No. IUT20-13 and by the Academy of Finland Project:SUPER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Härk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Härk, E., Jäger, R., Kasatkin, P.E. et al. The electrochemical activity of two binary alloy catalysts toward oxygen reduction reaction in 0.1 M KOH. J Solid State Electrochem 22, 31–40 (2018). https://doi.org/10.1007/s10008-017-3720-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3720-2

Keywords

Navigation