Skip to main content
Log in

Effect of crystallite size on the intercalation pseudocapacitance of lithium nickel vanadate in aqueous electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work describes lithium nickel vanadate (LiNiVO4) as a pseudocapacitor electrode material for the first time. The micro and nano-sized LiNiVO4 are synthesized via mechanochemical reaction and hydrothermal reaction followed by calcination, respectively. The phase purity, surface morphology and microstructure of the LiNiVO4 synthesized by both methods are analysed by X-ray diffraction and scanning electron microscopy techniques. The lithium ion intercalation-extraction behaviour of the LiNiVO4 electrode material is investigated in 1 M LiOH electrolyte solution. The results demonstrate an improved capacitive performance for nano-sized LiNiVO4 electrode synthesized via hydrothermal reaction due to the collective effect of small size and additional redox sites. The nanocrystalline LiNiVO4 electrode exhibits a high specific capacitance of 456.56 F g−1 at a current density of 0.5 A g−1. The cycle stability test reveals exceptional capacitance retention of 99.60% even after 1000 cycles owing to the unique structural feature which permit intercalation mechanism. These findings demonstrate the significance of lithium transition metal vanadate-based electrode material in the development of lithium ion intercalation pseudocapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Long CL, Jiang LL, Wei T, Yan J, Fan ZJ (2014) High-performance asymmetric supercapacitors with lithium intercalation reaction using metal oxide-based composites as electrode materials. J Mater Chem A 2:16678–16686

    Article  CAS  Google Scholar 

  2. Xiang C, Li M, Zhi M, Manivannan A, Wu N (2013) A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J Power Sources 226:65–70

    Article  CAS  Google Scholar 

  3. Wang Y, Guo J, Wang T, Shao J, Wang D, Yang Y-W (2015) Mesoporous transition metal oxides for supercapacitors. Nanomaterials 5:1667–1689

  4. Yuan C, Bin WH, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chemie - Int Ed 53:1488–1504

    Article  CAS  Google Scholar 

  5. Pan Y, Gao H, Zhang M, Li L, Wang Z (2017) Facile synthesis of ZnCo2O4 micro-flowers and micro-sheets on Ni foam for pseudocapacitor electrodes. J Alloys Compd 702:381–387

    Article  CAS  Google Scholar 

  6. Long C, Wei T, Yan J, Jiang L, Fan Z (2013) Supercapacitors based on graphene-supported iron nanosheets as negative electrode materials. ACS Nano 7:11325–11332

    Article  CAS  Google Scholar 

  7. Salunkhe RR, Jang K, Yu H, Yu S, Ganesh T, Han S-H, Ahn H (2011) Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications. J Alloys Compd 509:6677–6682

    Article  CAS  Google Scholar 

  8. Gupta RK, Candler J, Palchoudhury S, Ramasamy K, Gupta BK (2015) Flexible and high performance supercapacitors based on NiCo2O4for wide temperature range applications. Sci Rep 5:15265

    Article  CAS  Google Scholar 

  9. Jokar E, zad AI, Shahrokhian S (2015) Synthesis and characterization of NiCo2O4 nanorods for preparation of supercapacitor electrodes. J Solid State Electrochem 19:269–274

  10. Pettong T, Iamprasertkun P, Krittayavathananon A, Sukha P, Sirisinudomkit P, Seubsai A, Chareonpanich M, Kongkachuichay P, Limtrakul J, Sawangphruk M (2016) High-performance asymmetric supercapacitors of MnCo2O4 nanofibers and N-doped reduced graphene oxide aerogel. ACS Appl Mater Interfaces 8:34045–34053

    Article  CAS  Google Scholar 

  11. Peng S, Li L, Bin WH, Madhavi S, Lou XWD (2015) Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv Energy Mater 5:1401172

    Article  Google Scholar 

  12. Yu Z-Y, Chen L-F, Yu S-H, Yu M, Xie S, Ling Y, Liang C, Tong Y, Li Y, Gong L, Chen J, Tong Y, Zhou J, Wang ZL (2014) Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. J Mater Chem A 2:10889

    Article  CAS  Google Scholar 

  13. Yunyun F, Xu L, Wankun Z, Yuxuan Z, Yunhan Y, Honglin Q, Xuetang X, Fan W (2015) Spinel CoMn2O4 nanosheet arrays grown on nickel foam for high-performance supercapacitor electrode. Appl Surf Sci 357:2013–2021

    Article  Google Scholar 

  14. Vijayakumar S, Lee S-H, Ryu K-S (2015) Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance. Electrochim Acta 182:979–986

    Article  CAS  Google Scholar 

  15. Gulzar U, Goriparti S, Miele E, Li T, Maidecchi G, Toma A, De Angelis F, Capiglia C, Zaccaria RP (2016) Next-generation textiles: from embedded supercapacitors to lithium ion batteries. J Mater Chem A 4:16771–16800

    Article  CAS  Google Scholar 

  16. Xu Y, Ding L, Zhong T, Han X, Jiao L, Yuan H, Wang Y (2015) Novel application of LiCoO2 as a high-performance candidate material for supercapacitor. J Energy Chem 24:193–198

    Article  Google Scholar 

  17. Khairy M, Faisal K, Mousa MA (2017) High-performance hybrid supercapacitor based on pure and doped Li4Ti5O12 and graphene. J Solid State Electrochem 21:873–882

    Article  CAS  Google Scholar 

  18. Zhang Y, Liu Y, Chen J, Guo Q, Wang T, Pang H (2014) Cobalt vanadium oxide thin nanoplates: primary electrochemical capacitor application. Sci Rep 4:3537–3543

    Google Scholar 

  19. Cheng F, Chen J (2011) Transition metal vanadium oxides and vanadate materials for lithium batteries. J Mater Chem 21:9841

    Article  CAS  Google Scholar 

  20. Long C, Jiang L, Wei T, Yan J, Fan Z, Yang ZP, Wang ZL, Wang ZL, Jing X, Xie S, Lee YH, Tong Y, Zhou J, Wang ZL (2014) High-performance asymmetric supercapacitors with lithium intercalation reaction using metal oxide-based composites as electrode materials. J Mater Chem A 2:16678–16686

    Article  CAS  Google Scholar 

  21. Liu M-C, Kong L-B, Kang L, Li X, Walsh FC, Xing M, Lu C, Ma X-J, Luo Y-C, Broholm C, Ramirez AP (2014) Synthesis and characterization of M3V2O8 (M = Ni or Co) based nanostructures: a new family of high performance pseudocapacitive materials. J Mater Chem A 2:4919

    Article  CAS  Google Scholar 

  22. Zheng J, Zhang Y, Wang N, Zhao Y, Tian F, Meng C (2016) Facile synthesis and characterization of LiV3O8 with sheet-like morphology for high-performance supercapacitors. Mater Lett 171:240–243

    Article  CAS  Google Scholar 

  23. Zhao Z, Ma J, Xie L, Tian H, Zhou J, Hu Y, Huang X, Wu P, Dai J, Zhu Z, Wang H, Chen H (2005) A low-temperature molten salt synthesis of LiNiVO4 cathode material for lithium ion batteries. J Am Ceram Soc 88:2622–2624

    Article  CAS  Google Scholar 

  24. Prakash D, Masuda Y, Sanjeeviraja C (2013) Synthesis and structure refinement studies of LiNiVO4 electrode material for lithium rechargeable batteries. Ionics (Kiel) 19:17–23

    Article  CAS  Google Scholar 

  25. Lu C-H, Liou S-J (1999) Fabrication and microstructure of lithium nickel vanadium oxide prepared by solid-state reaction. Ceram Int 25:431–436

    Article  CAS  Google Scholar 

  26. Lu C-H, Liou S-J (2000) Hydrothermal preparation of nanometer lithium nickel vanadium oxide powder at low temperature. Mater Sci Eng B 75:38–42

    Article  Google Scholar 

  27. Li X, Wei YJ, Ehrenberg H, Liu DL, Zhan SY, Wang CZ, Chen G (2009) X-ray diffraction and Raman scattering studies of Li+/e−−extracted inverse spinel LiNiVO4. J Alloys Compd 471:L26–L28

    Article  CAS  Google Scholar 

  28. Bhuvaneswari MS, Selvasekarapandian S, Kamishima O, Kawamura J, Hattori T (2005) Vibrational analysis of lithium nickel vanadate. J Power Sources 139:279–283

    Article  CAS  Google Scholar 

  29. Kim S-I, Lee J-S, Ahn H-J, Song H-K, Jang J-H (2013) Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl Mater Interfaces 5:1596–1603

    Article  CAS  Google Scholar 

  30. Zhang W-B, Kong L-B, Ma X-J, Luo Y-C, Kang L (2014) Nickel vanadate and nickel oxide nanohybrid on nickel foam as pseudocapacitive electrodes for electrochemical capacitors. RSC Adv 4:41772–41777

    Article  CAS  Google Scholar 

  31. Augustyn V, Simon P, Dunn B, Grüner G, Regan BC, Dunn B, Lu Y, Che S, Chapman T, Jaworski R, Dimitrijevic NM, Podsiadlo P, Johnson CS, Rajh T (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597. doi:10.1039/c3ee44164d

    Article  CAS  Google Scholar 

  32. Wang Y, Song Y, Xia Y, Taberna PL, Simon P, Grey CP, Simon P, Grey CP, Wu DH, Zhu HW, Jin HJ, Stach EA, Ruoff RS (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950. doi:10.1039/C5CS00580A

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Indian Institute of Space Science and Technology (IIST) Trivandrum, NIIST Trivandrum for XRD, SAIF IIT Madras for SEM-EDS analysis and ACNSMM Kochi for XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Gladis Joseph.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hareendrakrishnakumar, H., Chulliyote, R. & Joseph, M.G. Effect of crystallite size on the intercalation pseudocapacitance of lithium nickel vanadate in aqueous electrolyte. J Solid State Electrochem 22, 1–9 (2018). https://doi.org/10.1007/s10008-017-3712-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3712-2

Keywords

Navigation