Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1571–1580 | Cite as

Alachlor removal performance of Ti/Ru0.3Ti0.7O2 anodes prepared from ionic liquid solution

  • Rodrigo de Mello
  • Lucas H.E. Santos
  • Marília M.S. Pupo
  • Katlin I.B. Eguiluz
  • Giancarlo R. Salazar-Banda
  • Artur J. Motheo
Original Paper


Electrochemical processes have a considerable impact on the treatment of contaminated water and wastewater, since water reuse is becoming increasingly necessary. One of the most important variables in electrochemical degradation of organic substances is the electrode material. Several materials have been used successfully as anodes, highlighting those of boron-doped diamond and mixed metal oxide (MMO). The first one is characterized by the high generation of hydroxyl radicals while the second is well known for generating different oxidant species depending on the electrolyte solution composition. The present work aims to develop MMO anodes through thermal decomposition using 1-butylimidazolium hydrogen sulfate, an ionic liquid, as solvent in the precursor solution preparation. The ionic liquid prepared anodes characterization was performed by different techniques such as, scanning electron microscopy (SEM), X-ray diffraction and cyclic voltammetry, and their electrocatalytic performance was evaluated by the electrochemical degradation of alachlor. The commercial electrode presented larger internal area than the electrodes produced by the alternative method, but its efficiency was ca. 16% lower and its energy consumption was 16% higher than the laboratory-made electrode and calcined at 550 °C. Based on SEM results, this behavior can be attributed to the distribution of RuO2 on the surface of the laboratory-made electrodes in comparison to the commercial one. Furthermore, the ionic liquid prepared electrodes showed an increase at least 8% in the voltammetric charge in the stability tests.


Mixed metal oxide Ionic liquids Organochlorine pollutants Electrochemical degradation Alachlor 



Ionic liquid prepared electrode



The authors thank the financial support from São Paulo Research Foundation (FAPESP), Sergipe State Research and Technological Innovation Foundation (FAPITEC/SE), the Coordination for the Improvement of Higher Education Personnel (CAPES), and the National Council for Scientific and Technological Development (CNPq: 130849/2016-2, 304419/2015-0, 140669/2014-0 and 310282/2013-6).


  1. 1.
    Primel EG, Zanella R, Kurz MHS, Gonçalves FF, Machado SO, Marchezan E (2005) Pollution of water by herbicides used in the irrigated rice cultivation in the central area of Rio Grande do Sul state, Brazil: theoretical prediction and monitoring. Quím Nova 28(4):605–609CrossRefGoogle Scholar
  2. 2.
    Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2015) Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chem Rev 115(24):13362–13407CrossRefGoogle Scholar
  3. 3.
    Oller I, Malato S, Sanchez-Perez JA (2011) Combination of advanced oxidation process and biological treatments for wastewater decontamination. A review. Sci Total Environ 409(20):4141–4166CrossRefGoogle Scholar
  4. 4.
    Konstantinou IK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ Pollut 141(3):555–570CrossRefGoogle Scholar
  5. 5.
    Verhaert V, Newmark N, D'Hollander W, Covaci A, Vlok W, Wepener V, Addo-Bediako A, Jooste A, Teuchies J, Blust R, Bervoets L (2017) Persistent organic pollutants in the Olifants River Basin, South Africa: Bioaccumulation and trophic transfer through a subtropical aquatic food web. Sci Total Environ 586:792–806CrossRefGoogle Scholar
  6. 6.
    Chopra AK, Sharma MK, Chamoli S (2011) Bioaccumulation of organochlorine pesticides in aquatic system—an overview. Environ Monit Assess 173:905–916CrossRefGoogle Scholar
  7. 7.
    Wang C, Liu C (2014) Decontamination of alachlor herbicide wastewater by a continuous dosing mode ultrasound/Fe2+/H2O2 process. J Environ Sci 26(6):1332–1339CrossRefGoogle Scholar
  8. 8.
    Human Health - water ingestion only Fact Sheet for Alachlor: (Human Health Carcinogen - water ingestion only), New York State Department of Environmental Conservation (1998) US EPA Accessed 28 Apr 2017
  9. 9.
    What substances are banned and authorised in the EU market? Accessed 15 May 2017
  10. 10.
    Bretveld RW, Thomas CMG, Scheepers PTJ, Zielhuis GA, Roeleveld N (2006) Pesticide exposure: the hormonal function of the female reproductive system disrupted?. Reprod Biol Endocrinol 4:30–43CrossRefGoogle Scholar
  11. 11.
    Crawford G, Hurrel P, Paroschy K, Pereira C (2017) Pharmaceuticals and other endocrine disrupting compounds in natural water systems. Muskoka Watershed Council, BracebridgeGoogle Scholar
  12. 12.
    Szewczyk R, Sobon A, Slaba M, Dlugonski J (2015) Mechanism study of alachlor biodegradation by Paecilomyces marquandii with proteomic and metabolomic methods. J Hazard Mater 291:52–64CrossRefGoogle Scholar
  13. 13.
    Pipi ARF, Andrade AR, Brillas E, Sirés I (2014) Total removal of alachlor from water by electrochemical processes. Sep Purif Technol 132:674–683CrossRefGoogle Scholar
  14. 14.
    Luna MDG, Rivera KKP, Suwannaruang T, Wantala K (2016) Alachlor photocatalytic degradation over uncalcined Fe-TiO2 loaded on granular activated carbon under UV and visible light irradiation. Desalin Water Treat 57:6712–6722CrossRefGoogle Scholar
  15. 15.
    Bolobajev J, Trapido M, Goi A (2015) Improvement in iron activation ability of alachlor Fenton-like oxidation by ascorbic acid. Chem Eng J 281:566–574CrossRefGoogle Scholar
  16. 16.
    Kidak R, Dogan S (2015) Degradation of trace concentrations of alachlor by medium frequency ultrasound. Chem Eng Process 89:19–27CrossRefGoogle Scholar
  17. 17.
    Wang C, Liu Z (2015) Degradation of alachlor using an enhanced sono-Fenton process with efficient Fenton’s reagent dosages. J Environ Sci Health B 50(7):504–513CrossRefGoogle Scholar
  18. 18.
    Juttner K, Galla U, Schmieder H (2000) Electrochemical approaches to environmental problems in the process industry. Electrochim Acta 45:2575–2594CrossRefGoogle Scholar
  19. 19.
    Santos TES, Silva RS, Jara CC, Eguiluz KIB, Salazar-Banda GR (2014) The influence of the syntesis method of Ti/RuO2 electrodes on their stability and catalytic activity for electrochemical oxidation of the pesticide carbaryl. Mater Chem Phys 148(1–2):39–47CrossRefGoogle Scholar
  20. 20.
    Malpass GRP, Miwa DW, Mortari DA, Machado SAS, Motheo AJ (2007) Decolorisation of real textile waste using electrochemical techniques: effect of the chloride concentration. Water Res 41(13):2969–2977CrossRefGoogle Scholar
  21. 21.
    Malpass GRP, Miwa DW, Machado SAS, Motheo AJ (2008) Decolourisation of real textile waste using electrochemical techniques: Effect of electrode composition. J Hazard Mater 156(1–3):170–177CrossRefGoogle Scholar
  22. 22.
    Rajkumar D, Kim JG (2006) Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. J Hazard Mater 136(2):203–212CrossRefGoogle Scholar
  23. 23.
    Alves PA, Malpass GRP, Johansen HD, Azevedo EB, Gomes LM, Vilela WF, Motheo AJ (2010) Photoassisted electrochemical degradation of real textile wastewater. Water Sci Technol 61(2):491–498CrossRefGoogle Scholar
  24. 24.
    Fornazari ALT, Malpass GRP, Miwa DW, Motheo AJ (2012) Application of electrochemical degradation of wastewater composed of mixtures of phenol-formaldehyde. Water Air Soil Poll 223(8):4895–4904CrossRefGoogle Scholar
  25. 25.
    Souza FL, Aquino JM, Miwa DW, Rodrigo MA, Motheo AJ (2014) Electrochemical degradation of dimethyl phthalate ester on a DSA® electrode. J Braz Chem Soc 25(3):492–501Google Scholar
  26. 26.
    Souza FL, Aquino JM, Miwa DW, Rodrigo MA, Motheo AJ (2014) Photo-assisted electrochemical degradation of the dimethyl phthalate ester on DSA® electrode. J Environ Chem Eng 2(2):811–818CrossRefGoogle Scholar
  27. 27.
    Malpass GRP, Miwa DW, Gomes L, Azevedo EB, Vilela WFD, Fukunaga MT, Guimaraes JR, Bertazzoli R, Machado SAS, Motheo AJ (2010) Photo-assisted electrochemical degradation of the comercial herbicide atrazine. Water Sci Technol 62(12):2729–2736CrossRefGoogle Scholar
  28. 28.
    Malpass GRP, Miwa DW, Santos RL, Vieira EM, Motheo AJ (2012) Unexpected toxicity decrease during photoelectrochemical degradation of atrazine with NaCl. Environ Chem Lett 10(2):177–182CrossRefGoogle Scholar
  29. 29.
    Terezo AJ, Pereira EC (1999) Preparation and characterization of Ti/RuO2–Nb2O5 electrodes obtained by polymeric precursor method. Electrochim Acta 44(25):4507–4513CrossRefGoogle Scholar
  30. 30.
    Pechini MP (1963) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent US3330697AGoogle Scholar
  31. 31.
    Kakihana M (1996) Invited Review “Sol-gel” preparation of high temperature superconducting oxides. J Sol-gel Sci Techn 6(1):7–55CrossRefGoogle Scholar
  32. 32.
    Alves VA, Silva LA, Boodts JFC (2000) Análise por difração de raios X de filmes de óxidos cerâmicos compostos por IrO2/TiO2/CeO2. Quím Nova 23(5):608–613CrossRefGoogle Scholar
  33. 33.
    Jara CC, Salazar-Banda GR, Arratia RS, Campino JS, Aguilera MI (2011) Improving the stability of Sb doped Sn oxides electrode thermally synthesized by using an acid ionic liquid as solvent. Chem Eng J 171(3):1253–1262CrossRefGoogle Scholar
  34. 34.
    Santos TES, Silva RS, Eguiluz KIB, Salazar-Banda GR (2015) Development of Ti/(RuO2)0.8 (MO2)0.2 (M=Ce, Sn or Ir) anodes for atrazine electro-oxidation. Influence of the synthesis method. Mater Lett 146:4–8CrossRefGoogle Scholar
  35. 35.
    Earle MJ, Esperança JMSS, Gilea MA, Lopes JNC, Rebelo LPN, Magee JW, Seddon KR, Widegren JA (2006) The distillation and volatility of ionic liquids. Nature 439:831–834CrossRefGoogle Scholar
  36. 36.
    Wasserscheid P, Welton T (2008) Ionic liquids in synthesis. Wiley-VCH, WeinheimGoogle Scholar
  37. 37.
    Bara JE (2011) Versatile and scalable method for producing N-functionalized imidazoles. Ind Eng Chem Res 50(24):13614–13619CrossRefGoogle Scholar
  38. 38.
    Pupo MMS, Costa LS, Figueiredo AC, Silva RS, Cunha FGC, Eguiluz KIB, Salazar-Banda GR (2013) Photoelectrocatalytic Degradation of Indanthrene Blue Dye using Ti/Ru-Based Electrodes Prepared by a Modified Pechini Method. J Braz Chem Soc 24(3):459–472CrossRefGoogle Scholar
  39. 39.
    Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J Org Chem 62:7512–7515CrossRefGoogle Scholar
  40. 40.
    Forti JC, Olivi P, Andrade AR (2001) Characterization of DSA®-type coatings with nominal composition Ti/Ru0,3Ti(0,7-x)SnxO2 prepared via a polymeric precursor. Electrochim Acta 47(6):913–920CrossRefGoogle Scholar
  41. 41.
    Meindersma GW, Maase M, de Haan AB (2012) In: Elvers B (ed-in-chief) Ullmann’s Encyclopedia of Industrial Chemistry, v. 19. Wiley-VCH, WeinheimGoogle Scholar
  42. 42.
    Guillard C, Beaugiraud B, Dutriez C, Herrmann JM, Jaffrezic H, Jaffrezic-Renault N, Lacroix M (2002) Physicochemical properties and photocatalytic activities of TiO2-films prepared by sol–gel methods. Appl Cat B 39(4):331–342CrossRefGoogle Scholar
  43. 43.
    Lin CP, Chen H, Nakaruk A, Koshy P, Sorrell CC (2013) Effect of Annealing Temperature on the Photocatalytic Activity of TiO2 Thin Films. Energy Proced 34:627–636CrossRefGoogle Scholar
  44. 44.
    Gonzalez IL, Moreira JAB, Andrade AR, Ribeiro J (2016) Estudo da Reação de Desprendimento de Oxigênio em Eletrodos do Tipo Ta/RuO2-Ta2O5-TiO2. Rev Virtual Quím 8(5):1347–1365CrossRefGoogle Scholar
  45. 45.
    Ouattara L, Diaco T, Duo I, Panizza M, Foti G, Comninellis C (2003) Dimensionally Stable Anode-Type Anode Based on Conductive p-Silicon Substrate. J Electrochem Soc 150(2):D41–D45CrossRefGoogle Scholar
  46. 46.
    Kodintsev IM, Trasatti S, Rubel M, Wieckowski A, Kaufher N (1992) X-ray photoelectron spectroscopy and electrochemical surface characterization of IrO2 + RuO2 electrodes. Langmuir 8(1):283–290CrossRefGoogle Scholar
  47. 47.
    Da Silva LM, Faria LA, Boodts JFC (2001) Determination of the morphology factor of oxide layers. Electrochim Acta 47(3):395–403CrossRefGoogle Scholar
  48. 48.
    Maldonado MI, Passarinho PC, Oller I, Gernjak W, Fernández P, Blanco J, Malato S (2007) Photocatalytic degradation of EU priority substances: A comparison between TiO2 and Fenton plus photo-Fenton in a solar pilot plant. J Photoch Photobio A 185(2–3):354–363CrossRefGoogle Scholar
  49. 49.
    Torres RA, Mosteo R, Pétrier C, Pulgarin C (2009) Experimental design approach to the optimization of ultrasonic degradation of alachlor and enhancement of treated water biodegradability. Ultrason Sonochem 16(3):425–430CrossRefGoogle Scholar
  50. 50.
    Xin Y, Liu H, Han L, Zhou Y (2011) Comparative study of photocatalytic and photoelectrocatalytic properties of alachlor using different morphology TiO2/Ti photoelectrodes. J Hazard Mater 192(3):1812–1818CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Rodrigo de Mello
    • 1
  • Lucas H.E. Santos
    • 1
  • Marília M.S. Pupo
    • 2
  • Katlin I.B. Eguiluz
    • 2
  • Giancarlo R. Salazar-Banda
    • 2
  • Artur J. Motheo
    • 1
  1. 1.São Carlos Institute of ChemistryUniversity of São PauloSão CarlosBrazil
  2. 2.Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute/Processes Engineering Postgraduate-PEPUniversity TiradentesAracajuBrazil

Personalised recommendations