Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1373–1383 | Cite as

Voltammetric determination of 17β-estradiol in human urine and buttermilk samples using a simple copper(II) oxide-modified carbon paste electrode

  • Cristiane Antoniazzi
  • Camila Alves de Lima
  • Rafael Marangoni
  • Almir Spinelli
  • Eryza Guimarães de Castro
Original Paper


This paper reports the voltammetric determination of 17β-estradiol in urine and buttermilk samples using a simple detector based on a carbon paste electrode (CPE) modified with copper(II) oxide (CuO). The CuO was obtained by the Pechini method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive (EDS), Fourier transform infrared (FTIR), and Raman spectroscopies. Cyclic voltammetry (CV) and square-wave voltammetry (SWV) demonstrated that the CuO-modified carbon paste electrode (CuO/CPE detector) displayed much higher electrocatalytic activity in the 17β-estradiol oxidation reaction than the CPE without modification, exhibiting a low detection limit of 21.0 nmol L−1 with a wide linear range from 60.0 to 800.0 nmol L−1 (R = 0.998). Satisfactory results were obtained for the determination of 17β-estradiol in human urine and buttermilk samples. The proposed electrochemical detector offers high repeatability, stability, fast response, low cost, and potential for practical application in the quantification of this hormone.

Graphical abstract


17β-Estradiol Carbon paste electrode CuO Square-wave voltammetry 



The authors are grateful to the Brazilian government agencies CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior), CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnológico), FINEP (Financiadora de Estudos e Projetos), and Fundação Araucária for scholarships and financial support. This research was also supported by Grupo de Estudos de Processos Eletroquímicos e Eletroanalíticos of Federal University of Santa Catarina (Florianópolis/SC, Brazil) and Institute of Chemistry of University of São Paulo (São Paulo/SP, Brazil).


  1. 1.
    Li Y, Zhao X, Li P, Huang Y, Wang J, Zhang J (2015) Highly sensitive Fe3O4 nanobeads/graphene-based molecularly imprinted electrochemical sensor for 17β-estradiol in water. Anal Chim Acta 884:106–113CrossRefGoogle Scholar
  2. 2.
    Omar TFT, Ahmad A, Aris AZ, Yusoff FM (2016) Endocrine disrupting compounds (EDCs) in environmental matrices: review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds. TrAC Trends Anal Chem 85:241–259CrossRefGoogle Scholar
  3. 3.
    Liu H, Yang X, Lu R (2016) Development of classification model and QSAR model for predicting binding affinity of endocrine disrupting chemicals to human sex hormone-binding globulin. Chemosphere 156:1–7CrossRefGoogle Scholar
  4. 4.
    Scsukova S, Rollerova E, Bujnakova AM (2016) Impact of endocrine disrupting chemicals on onset and development of female reproductive disorders and hormone-related cancer. Biol Reprod 16:243–254CrossRefGoogle Scholar
  5. 5.
    Silva CP, Lima DLD, Schneider RJ, Otero M, Esteves VI (2013) Development of ELISA methodologies for the direct determination of 17β-estradiol and 17α-ethinylestradiol in complex aqueous matrices. J Environ Manag 124:121–127CrossRefGoogle Scholar
  6. 6.
    Hu L, Cheng Q, Chen D, Ma M, Wu K (2015) Liquid-phase exfoliated graphene as highly-sensitive sensor for simultaneous determination of endocrine disruptors: diethylstilbestrol and estradiol. J Hazard Mater 283:157–163CrossRefGoogle Scholar
  7. 7.
    Tseng TTC, Gusviputri A, Hoa LNQ (2015) A simple, sensitive and compact electrochemical ELISA for estradiol based on chitosan deposited platinum wire microelectrodes. J Electroanal Chem 758:59–67CrossRefGoogle Scholar
  8. 8.
    Feng H, Ning L, Xiao-Li L (2016) Simultaneous determination of hexoestrol, diethylstilbestrol, estrone and 17-beta-estradiol in feed by gas chromatography-mass spectrometry. J Northeast Agric Univ 23:44–49Google Scholar
  9. 9.
    Shahbazi Y, Malekinejad H, Tajik H (2016) Determination of naturally occurring estrogenic hormones in cow’s and river buffalo’s meat by HPLC-FLD method. J Food Drug Anal 24:457–463CrossRefGoogle Scholar
  10. 10.
    Li Y, Xu J, Jia M, Yang Z, Liang Z, Guo J, Luo Y, Shen F, Sun C (2015) Colorimetric determination of 17β-estradiol based on the specific recognition of aptamer and the salt-induced aggregation of gold nanoparticles. Mater Lett 159:221–224CrossRefGoogle Scholar
  11. 11.
    Regan F, Moran A, Fogarty B, Dempsey E (2003) Novel modes of capillary electrophoresis for the determination of endocrine disrupting chemicals. J Chromatogr A 1014:141–152CrossRefGoogle Scholar
  12. 12.
    Yilmaz B, Kadioglu Y (2013) Determination of 17 β-estradiol in pharmaceutical preparation by UV spectrophotometry and high performance liquid chromatography methods. Arab J Chem 10:1422–1428CrossRefGoogle Scholar
  13. 13.
    Cesarino I, Hümmelgen IA (2015) An additional tool towards overcoming absence of specificity of carbon nanostructure-based electrochemical sensors—application to estriol and estradiol detection and distinction. J Solid State Electrochem 19:3035–3050CrossRefGoogle Scholar
  14. 14.
    Perez C, Fábio RS, Codognoto L (2015) Voltammetric determination of 17α-ethinylestradiol hormone in supply dam using BDD electrode. J Solid State Electrochem 20:2471–2478CrossRefGoogle Scholar
  15. 15.
    Moraes FC, Rossi B, Donatoni MC, de Oliveira KT, Pereira EC (2015) Sensitive determination of 17β-estradiol in river water using a graphene based electrochemical sensor. Anal Chim Acta 881:37–43CrossRefGoogle Scholar
  16. 16.
    Erogul S, Bas SZ, Ozmen M, Yildiz S (2015) A new electrochemical sensor based on Fe3O4 functionalized graphene oxide-gold nanoparticle composite film for simultaneous determination of catechol and hydroquinone. Electrochim Acta 186:302–313CrossRefGoogle Scholar
  17. 17.
    Gao F, Zheng D, Tanaka H, Zhan F, Yuan X, Gao F, Wang Q (2015) An electrochemical sensor for gallic acid based on Fe2O3/electro-reduced graphene oxide composite: estimation for the antioxidant capacity index of wines. Mater Sci Eng C 57:279–287CrossRefGoogle Scholar
  18. 18.
    Nguyen TT, Nguyen VH, Deivasigamani RK, Kharismadewi D, Iwai Y, Shim JJ (2016) Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications. Solid State Sci 53:71–77CrossRefGoogle Scholar
  19. 19.
    Kim SH, Umar A, Kumar R, Ibrahim AA, Kumar G (2015) Facile synthesis and photocatalytic activity of cocoon-shaped CuO nanostructures. Mater Lett 156:138–141CrossRefGoogle Scholar
  20. 20.
    Dong C, Xiao X, Chen G, Guan H, Wang Y (2015) Morphology control of porous CuO by surfactant using combustion method. Appl Surf Sci 349:844–848CrossRefGoogle Scholar
  21. 21.
    Beitollahi H, Ivari SG, Torkzadeh-Mahani M (2016) Voltammetric determination of 6-thioguanine and folic acid using a carbon paste electrode modified with ZnO-CuO nanoplates and modifier. Mater Sci Eng C 69:128–133CrossRefGoogle Scholar
  22. 22.
    Soomro RA, Hallam KR, Ibupoto ZH, Tahira A, Sherazi STH, Sirajjuddin SSM, Willander M (2016) Amino acid assisted growth of CuO nanostructures and their potential application in electrochemical sensing of organophosphate pesticide. Electrochim Acta 190:972–979CrossRefGoogle Scholar
  23. 23.
    Saleh GA, Askal HF, Refaat IH, Naggar AH, Abdel-aal FAM (2016) Adsorptive square wave voltammetric determination of the antiviral drug valacyclovir on a novel sensor of copper microparticles–modified pencil graphite electrode. Arab J Chem 9:143–151CrossRefGoogle Scholar
  24. 24.
    Liang X, Zhang X, Wang F, Xu M, Bao X (2014) Simultaneous determination of guanine and adenine on CuO shuttle-like nanocrystals/poly(neutral red) film on glassy carbon electrode. J Solid State Electrochem 18:3453–3461CrossRefGoogle Scholar
  25. 25.
    Song H, Ni Y, Kokot S (2015) A novel electrochemical sensor based on the copper-doped copper oxide nano-particles for the analysis of hydrogen peroxide. Colloids Surf A Physicochem Eng Asp 465:153–158CrossRefGoogle Scholar
  26. 26.
    Ghanbari K, Babaei Z (2016) Fabrication and characterization of non-enzymatic glucose sensor based on ternary NiO/CuO/polyaniline nanocomposite. Anal Biochem 498:37–46CrossRefGoogle Scholar
  27. 27.
    Farid MM, Goudini L, Piri F, Zamani A, Saadati F (2016) Molecular imprinting method for fabricating novel glucose sensor: polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles. Food Chem 194:61–67CrossRefGoogle Scholar
  28. 28.
    Lu N, Shao C, Li X, Miao F, Wang K, Liu Y (2016) CuO nanoparticles/nitrogen-doped carbon nanofibers modified glassy carbon electrodes for non-enzymatic glucose sensors with improved sensitivity. Ceram Int 42:11285–11293CrossRefGoogle Scholar
  29. 29.
    Liu XW, Pan P, Zhang ZM, Guo F, Yang ZC, Wei J, Wei Z (2016) Ordered self-assembly of screen-printed flower-like CuO and CuO/MWCNTs modified graphite electrodes and applications in non-enzymatic glucose sensor. J Electroanal Chem 763:37–44CrossRefGoogle Scholar
  30. 30.
    Zhong Y, Shi T, Liu Z, Cheng S, Huang Y, Tao X, Liao G, Tang Z (2016) Ultrasensitive non-enzymatic glucose sensors based on different copper oxide nanostructures by in-situ growth. Sensors Actuators B Chem 236:326–333CrossRefGoogle Scholar
  31. 31.
    Medeiros NG, Ribas VC, Lavayen V, Da Silva JA (2016) Synthesis of flower-like cuo hierarchical nanostructures as an electrochemical platform for glucose sensing. J Solid State Electrochem 20:2419–2426CrossRefGoogle Scholar
  32. 32.
    Yang YJ, Li W, Chen X (2012) Highly enhanced electrocatalytic oxidation of glucose on Cu (OH)2/CuO nanotube arrays modified copper electrode. J Solid State Electrochem 16:2877–2881CrossRefGoogle Scholar
  33. 33.
    Chen M, Hou C, Huo D, Yang M, Fa H (2016) An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite. Appl Surf Sci 364:703–709CrossRefGoogle Scholar
  34. 34.
    Gutierrez FA, Rubiane MD, Rivas GA (2016) Electrochemical sensor for amino acids and glucose based on glassy carbon electrodes modified with multi-walled carbon nanotubes and copper microparticles dispersed in polyethylenimine. J Electroanal Chem 765:16–21CrossRefGoogle Scholar
  35. 35.
    Yurddaskal M, Dikici T, Celik E (2016) Effect of annealing temperature on the surface properties and photocatalytic efficiencies of Cu2O/CuO structures obtained by thermal oxidation of Cu layer on titanium substrates. Ceram Int 42:17749–17753CrossRefGoogle Scholar
  36. 36.
    Bhuvaneshwari S, Gopalakrishnan N (2016) Hydrothermally synthesized copper oxide (CuO) superstructures for ammonia sensing. J Colloid Interface Sci 480:76–84CrossRefGoogle Scholar
  37. 37.
    Nahas MN, Jilani A, Salah N (2016) Microwave synthesis of ultrathin, non-agglomerated CuO nanosheets and their evaluation as nanofillers for polymer nanocomposites. J Alloys Compd 680:350–358CrossRefGoogle Scholar
  38. 38.
    Agarwal R, Verma K, Agrawal NK, Duchaniya RK, Singh R (2016) Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids. Appl Therm Eng 102:1024–1036CrossRefGoogle Scholar
  39. 39.
    Wang Y, Jiang T, Meng D, Yang J, Li Y, Ma Q, Han J (2014) Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties. Appl Surf Sci 317:414–421CrossRefGoogle Scholar
  40. 40.
    Lugo-Ruelas M, Amézaga-Madrid P, Esquivel-Pereyra O, Antúnez-Flores W, Pizá-Ruiz P, Ornelas-Gutiérrez C, Miki-Yoshida M (2015) Synthesis, microstructural characterization and optical properties of CuO nanorods and nanowires obtained by aerosol assisted CVD. J Alloys Compd 643:S46–S50CrossRefGoogle Scholar
  41. 41.
    Alhaji A, Razavi RS, Ghasemi A, Loghman-Estarki MR (2017) Modification of Pechini sol–gel process for the synthesis of MgO-Y2O3 composite nanopowder using sucrose-mediated technique. Ceram Int 43:2541–2548CrossRefGoogle Scholar
  42. 42.
    Jan T, Iqbal J, Farooq U, Gul A, Abbasi R, Ahmad I, Malik M (2015) Structural, Raman and optical characteristics of Sn doped CuO nanostructures: a novel anticancer agent. Ceram Int 41:13074–13079CrossRefGoogle Scholar
  43. 43.
    Ganga BG, Santhosh PN (2015) Facile synthesis of porous copper oxide nanostructure using copper hydroxide acetate precursor. Mater Lett 138:113–115CrossRefGoogle Scholar
  44. 44.
    Sahai A, Goswami N, Kaushik SD, Tripathi S (2016) Cu/Cu2O/CuO nanoparticles: novel synthesis by exploding wire technique and extensive characterization. Appl Surf Sci 390:974–983CrossRefGoogle Scholar
  45. 45.
    Ananth A, Dharaneedharan S, Heo MS, Mok YS (2015) Copper oxide nanomaterials: synthesis, characterization and structure-specific antibacterial performance. Chem Eng J 262:179–188CrossRefGoogle Scholar
  46. 46.
    Hamid H, Eskicioglu C (2012) Fate of estrogenic hormones in wastewater and sludge treatment: a review of properties and analytical detection techniques in sludge matrix. Water Res 46:5813–5833CrossRefGoogle Scholar
  47. 47.
    Lahcen AA, Baleg AA, Baker P, Iwuoha E, Amine A (2017) Synthesis and electrochemical characterization of nanostructured magnetic molecularly imprinted polymers for 17-β-estradiol determination. Sensors Actuators B Chem 241:698–705CrossRefGoogle Scholar
  48. 48.
    Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28CrossRefGoogle Scholar
  49. 49.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  50. 50.
    Wang T, Su W, Fu Y, Hu J (2016) Controllably annealed CuO-nanoparticle modified ITO electrodes: characterisation and electrochemical studies. Appl Surf Sci 390:795–803CrossRefGoogle Scholar
  51. 51.
    Janegitz BC, dos Santos FA, Faria RC, Zucolotto V (2014) Electrochemical determination of estradiol using a thin film containing reduced graphene oxide and dihexadecylphosphate. Mater Sci Eng C 37:14–19CrossRefGoogle Scholar
  52. 52.
    Song J, Yang J, Hu X (2008) Electrochemical determination of estradiol using a poly(l-serine) film-modified electrode. J Appl Electrochem 38:833–836CrossRefGoogle Scholar
  53. 53.
    Yuan L, Zhang J, Zhou P, Chen J, Wang R, Wen T, Li Y, Zhou X, Jiang H (2011) Electrochemical sensor based on molecularly imprinted membranes at platinum nanoparticles-modified electrode for determination of 17β-estradiol. Biosens Bioelectron 29:29–33CrossRefGoogle Scholar
  54. 54.
    Lin X, Li Y (2006) A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosens Bioelectron 22:253–259CrossRefGoogle Scholar
  55. 55.
    Liu X, Wong DKY (2007) Electrocatalytic detection of estradiol at a carbon nanotube Ni(Cyclam) composite electrode fabricated based on a two-factorial design. Anal Chim Acta 594:184–191CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Cristiane Antoniazzi
    • 1
  • Camila Alves de Lima
    • 1
  • Rafael Marangoni
    • 1
  • Almir Spinelli
    • 2
  • Eryza Guimarães de Castro
    • 1
  1. 1.Departamento de QuímicaUniversidade Estadual do Centro-OesteGuarapuavaBrazil
  2. 2.Departamento de Química – CFMUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations