Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1277–1287 | Cite as

Exfoliated graphite nanoplatelets and gold nanoparticles based electrochemical sensor for determination of levodopa

  • Tânia Regina Silva
  • Alessandra Smaniotto
  • Iolanda Cruz Vieira
Original Paper
  • 243 Downloads

Abstract

This paper describes a rapid, accurate, and sensitive method for the determination of levodopa in a pharmaceutical sample using a glassy carbon electrode modified with a hybrid nanocomposite constituted of exfoliated graphite nanoplatelets dispersed in a suspension of gold nanoparticles in carboxymethylcelullose (AuNP-CMC-xGnP/GCE). The nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopy, and zeta potential. Electrochemical characterization of the proposed sensor by cyclic voltammetry and electrochemical impedance spectroscopy indicated that the nanocomposite used for the electrode modification facilitated electron transfer. Using square-wave voltammetry (SWV) under optimized conditions (0.50% (m/v) of AuNP-CMC-xGnP, 0.1 mol L−1 sulfuric acid, frequency 30 Hz, pulse amplitude 50 mV, and scan increment 6.0 mV), the calibration curve showed a linear range for levodopa from 5 to 50 μmol L−1, with a limit of detection of 0.5 μmol L−1. The sensor demonstrated good repeatability and electrode-to-electrode repeatability, with relative standard deviations of 2 and 4%, respectively. The proposed method was successfully applied to quantify levodopa in a pharmaceutical sample by SWV, showing good accuracy. Recoveries of 98 to 107% demonstrated that the method is suitable for practical applications. Therefore, the proposed sensor represents a useful tool for rapid and accurate determination of levodopa.

Keywords

Sensor Exfoliated graphite nanoplatelets Gold nanoparticles Carboxymethylcellulose Levodopa 

Notes

Acknowledgements

The authors acknowledge the financial support from FAPESC/CNPq (Process 2807/2012 – PRONEM), CNPq (Process 442609/2014-0). This research was supported by the Central Laboratory of Electron Microscopy, Federal University of Santa Catarina (Florianópolis, SC, Brazil).

Supplementary material

10008_2017_3677_MOESM1_ESM.docx (115 kb)
ESM 1 (DOCX 115 kb)

References

  1. 1.
    Ahamed M, Khan MAM, Siddiqui MKJ, Alsalhi MS, Alrokayan SA (2011) Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles. Physica E 43:1266–1271Google Scholar
  2. 2.
    Kerman K, Saito M, Yamamura S, Takamura Y, Tamiya E (2008) Nanomaterial-based electrochemical biosensors for medical applications. Trends Anal Chem 27:585–592CrossRefGoogle Scholar
  3. 3.
    Siqueira JR, Caseli L, Crespilho FN, Zucolotto V, Oliveira ON (2010) Immobilization of biomolecules on nanostructured films for biosensing. Biosens Bioelectron 25:1254–1263CrossRefGoogle Scholar
  4. 4.
    Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol Adv 30:512–523CrossRefGoogle Scholar
  5. 5.
    Pérez-López B, Merkoçi A (2011) Nanomaterials based biosensors for food analysis applications. Trends Food Sci Technol 22:625–639CrossRefGoogle Scholar
  6. 6.
    Farias CBB, Silva AF, Rufino RD, Luna JM, Souza JEG, Sarubbo LA (2014) Synthesis of silver nanoparticles using a biosurfactant produced in low-cost medium as stabilizing agent. Electron J Biotechnol 17:122–125CrossRefGoogle Scholar
  7. 7.
    Campbell FW, Compton RG (2010) The use of nanoparticles in electroanalysis: an updated review. Anal Bioanal Chem 396:241–259CrossRefGoogle Scholar
  8. 8.
    Merçoki A (2010) Nanoparticles-based strategies for DNA, protein and cell sensors. Biosens Bioelectron 26:1164–1177CrossRefGoogle Scholar
  9. 9.
    Willner I, Willner B, Tel-Vered R (2011) Electroanalytical Applications of Metallic Nanoparticles and Supramolecular Nanostructures. Electroanalysis 23:13–28CrossRefGoogle Scholar
  10. 10.
    Qiao Y, Chen H, Lin Y, Huang J (2011) Controllable Synthesis of Water-Soluble Gold Nanoparticles and Their Applications in Electrocatalysis and Surface-Enhanced Raman Scattering. Langmuir 27:11090–11097CrossRefGoogle Scholar
  11. 11.
    Dupont J, Scholten JD (2010) On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem Soc Rev 39:1780–1804Google Scholar
  12. 12.
    Lofrano G, Carotenuto M, Libralato G, Domingos RR, Markus A, Dini L, Gautam RK, Balantoni D, Rossi M, Sharma SK, Chattopadhyaya MC, Giugni M, Meric S (2016) Polymer functionalized nanocomposites for metals removal from water and wastewater: An overview. Water Res 92:22–37Google Scholar
  13. 13.
    Yuan S, Chen W, Hu ST (2005) Fabrication of TiO2 nanoparticles/surfactant polymer complex film on glassy carbon electrode and its application to sensing trace dopamine. Mater Sci Eng C 25:479–485Google Scholar
  14. 14.
    Khun KK, Mahajan A, Bedi RK (2011) Effect of cationic/anionic organic surfactants on evaporation induced self assembled tin oxide nanostructured films. Appl Surf Sci 257:2929–2934Google Scholar
  15. 15.
    Plaza GA, Chojniak J, Banat IM (2014) Biosurfactant mediated biosynthesis of selected metallic nanoparticles. Int J Mol Sci 15:13720–13737Google Scholar
  16. 16.
    Averous L, Fauconnier N, Moro L, Fringant C (2000) Blends of thermoplastic starch and polyesteramide: processing and properties. J Appl Polym Sci 76:1117–1128CrossRefGoogle Scholar
  17. 17.
    Hartman J, Albertsson AC, Söderqvist Lindblad M, Sjöberg J (2006) Oxygen barrier materials from renewable sources: Material properties of softwood hemicellulose-based films. J Appl Polym Sci 100:2985–2991CrossRefGoogle Scholar
  18. 18.
    Petersson L, Oksman K (2006) Biopolymer based nanocomposites: Comparing layered silicates and microcystalline cellulose as nanoreinforcement. Compos Sci Technol 66:2187–2196CrossRefGoogle Scholar
  19. 19.
    Chevirona P, Gouanvéa F, Espuche E (2014) Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites. Carbohyd Polym 108:291–298CrossRefGoogle Scholar
  20. 20.
    Pandey S, Goswami GK, Nanda KK (2012) Green Synthesis of Biopolymer-Silver Nanoparticle Nanocomposite: An Optical Sensor for Ammonia Detection. Int J Biol Macromolec 51:583–589CrossRefGoogle Scholar
  21. 21.
    Shi Q, Li Q, Shan D, Fan Q, Xue H (2008) Biopolymer-clay nanoparticles composite system (Chitosan-laponite) for electrochemical sensing based on glucose oxidase. Mat Sci Eng C 28:1372–1375CrossRefGoogle Scholar
  22. 22.
    Zhao HY, Zheng W, Meng ZX, Zhou MH, Xu XX, Li Z, Zheng YF (2009) Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film. Biosens Bioelectron 24:2352–2357Google Scholar
  23. 23.
    Parveen A, Tayyab A, Wahid M, Rao S (2015) Facile biological approach for immobilization, physicochemical characterization and antibacterial activity of noble metals nanocomposites. Mater Lett 148:86–90CrossRefGoogle Scholar
  24. 24.
    Kang X, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81:754–759CrossRefGoogle Scholar
  25. 25.
    Lu J, Do I, Fukushima H, Lee I, Drzal LT (2010) Stable aqueous suspension and self-assembly of graphite nanoplatelets coated with various polyelectrolytes. J Nanomater 2:1–11Google Scholar
  26. 26.
    Li B, Zhong W (2011) Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci 46:5595–5614CrossRefGoogle Scholar
  27. 27.
    Benvidi A, Dehghani-Firouzabadi A, Mazloum-Ardakani A, Mirjalili F, Zare R (2015) Electrochemical deposition of gold nanoparticles on reduced graphene oxide modified glassy carbon electrode for simultaneous determination of levodopa, uric acid and folic acid. J Electroanal Chem 736:22–29CrossRefGoogle Scholar
  28. 28.
    Lin L, Lian H-T, Sun X-Y, Yu Y-M, Liu B (2015) An L-dopa electrochemical sensor based on a graphene doped molecularly imprinted chitosan film. Anal Methods 7:1387–1394CrossRefGoogle Scholar
  29. 29.
    Connolly BS, Lang EA (2014) Pharmacological treatment of Parkinson disease: a review. JAMA 311:1670–1683CrossRefGoogle Scholar
  30. 30.
    Houghton D, Hurtig H, Metz S, Brandabur M. M. Parkinson’s disease medications. National Parkinson Foundation’s Educational Book Series, available at www.parkinson.org/books. Google Scholar
  31. 31.
    Beitollahi H, Raoof J-B, Housseinzadeh R (2011) Application of a Carbon‐Paste Electrode Modified with 2,7‐Bis(ferrocenyl ethyl)fluoren‐9‐one and Carbon Nanotubes for Voltammetric Determination of Levodopa in the Presence of Uric Acid and Folic Acid. Electroanalysis 23:1934–1940CrossRefGoogle Scholar
  32. 32.
    Parkinson Study Group (2004) Levodopa and the progression of Parkinson's disease. N Engl J Med 351:2498–2508Google Scholar
  33. 33.
    Fahn SJ (2006) Levodopa in the treatment of Parkinson's disease. Neural Transm Suppl 71:1–15CrossRefGoogle Scholar
  34. 34.
    Kim WH, Karim MM, Lee SH (2008) Simultaneous determination of levodopa and carbidopa by synchronous fluorescence spectrometry using double scans. Anal Chim Acta 619:2–7CrossRefGoogle Scholar
  35. 35.
    Mohamed GG, Nour-El-Dien FA, El-Nahas RG (2009) Spectrophotometric and standard addition methods for quantitative determination of dopamine hydrochloride and levodopa in tablets and ampoule.  Afinidad LXVI 541:243Google Scholar
  36. 36.
    Chamsaz M, Safavi A, Fadaee J (2007) Simultaneous kinetic-spectrophotometric determination of carbidopa, levodopa and methyldopa in the presence of citrate with the aid of multivariate calibration and artificial neural networks. Anal Chim Acta 603:140–146CrossRefGoogle Scholar
  37. 37.
    Abdel-Ghany MF, Lobna, Hussein A, Miriam F, Ayad, Youssef M (2017) Investigation of different spectrophotometric and chemometric methods for determination of entacapone, levodopa and carbidopa in ternary mixture. Spectrochim Acta Mol Biomol Spectrosc 171:236–245Google Scholar
  38. 38.
    Ribeiro RP, Gasparetto JC, Oliveira RV, Guimarães TM, Martins CA, Cardoso MA, Pontarolo R, Carvalho KA (2015) Simultaneous determination of levodopa, carbidopa, entacapone, tolcapone, 3-O-methyldopa and dopamine in human plasma by an HPLC-MS/MS method. Bioanalysis 7:207–220CrossRefGoogle Scholar
  39. 39.
    Miller RB, Dehelean L, Bélanger L (1993) Determination of carbidopa and levodopa in human plasma by high-performance liquid chromatography with electrochemical detection. Chromatographia 35:607–612CrossRefGoogle Scholar
  40. 40.
    Baranowska I, Plonka J (2008) Determination of levodopa and biogenic amines in urine samples using high-performance liquid chromatography. J Chromatogr Sci 46:30–34CrossRefGoogle Scholar
  41. 41.
    Zhao S, Bai W, Wang B, He M (2007) Determination of levodopa by capillary electrophoresis with chemiluminescence detection. Talanta 73:142–146CrossRefGoogle Scholar
  42. 42.
    Chen X, Zhang J, Zhai H, Chen X, Hu Z (2005) Determination of levodopa by capillary zone electrophoresis using an acidic phosphate buffer and its application in the analysis of beans. Food Chem 92:381–386CrossRefGoogle Scholar
  43. 43.
    Mazloum-Ardakani M, Khoshroo A (2013) Nano composite system based on coumarin derivative–titanium dioxide nanoparticles and ionic liquid: Determination of levodopa and carbidopa in human serum and pharmaceutical formulations.  Anal Chim Acta 798:25–32CrossRefGoogle Scholar
  44. 44.
    Takeda HH, Silva TA, Janegitz BC, Vicentini FC, Mattoso LHC, Fatibello-Filho O (2016) Electrochemical sensing of levodopa or carbidopa using a glassy carbon electrode modified with carbon nanotubes within a poly(allylamine hydrochloride) film. Anal Methods 8:1274–1280CrossRefGoogle Scholar
  45. 45.
    Wang Q, Das MR, Li M, Boukherroub R, Szunerits S (2013) Voltammetric detection of l-dopa and carbidopa on graphene modified glassy carbon interfaces. Bioelectrochemistry 93:15–22CrossRefGoogle Scholar
  46. 46.
    Rezaei B, Shams-Ghahfarokhi L, Havakeshian E, Ensafi AA (2016) An electrochemical biosensor based on nanoporous stainless steel modified by gold and palladium nanoparticles for simultaneous determination of levodopa and uric acid. Talanta 158:42–50CrossRefGoogle Scholar
  47. 47.
    Mazloum-Ardakani M, Ahmad SH, Mahmoudabadi ZS, Khoshroo A (2016) Nano composite system based on fullerene-functionalized carbon nanotubes for simultaneous determination of levodopa and acetaminophen. Measurement 91:162–167CrossRefGoogle Scholar
  48. 48.
    Huang M, El-Sayed A (2010) Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28CrossRefGoogle Scholar
  49. 49.
    Schneider CA, Rasbanda WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  50. 50.
    Kaszuba M, Corbett J, Watson FM, Jones A (2010) High-concentration zeta potential measurements using light-scattering techniques. Phil Trans R Soc A 368:4439–4451CrossRefGoogle Scholar
  51. 51.
    Fengel D, Wegener G (1989) Chemistry, Ultrastructure, Reactions. Walter de Gruyter, New YorkGoogle Scholar
  52. 52.
    Arvand M, Ghodsi N (2013) A voltammetric sensor based on graphene-modified electrode for the determination of trace amounts of L-dopa in mouse brain extract and pharmaceuticals. J Solid State Electrochem 17:775–784CrossRefGoogle Scholar
  53. 53.
    Ciolkowski EL, Maness KM, Cahlil PS, Wightman RM (1994) Disproportionation During Electrooxidation of Catecholamines at Carbon-Fiber Microelectrodes. Anal Chem 66:3611–3617CrossRefGoogle Scholar
  54. 54.
    Akhgar MR, Salari M, Zamani H (2011) Simultaneous determination of levodopa, NADH, and tryptophan using carbon paste electrode modified with carbon nanotubes and ferrocenedicarboxylic acid. J Solid State Electrochem 15:845–853CrossRefGoogle Scholar
  55. 55.
    Fouladgar M, Karimi-Maleh H, Gupta VK (2015) Highly sensitive voltammetric sensor based on NiO nanoparticle room temperature ionic liquid modified carbon paste electrode for levodopa analysis. J Mol Liq 208:78–83Google Scholar
  56. 56.
    Bergamini MF, Santos AL, Stradiotto NR, Zanoni MVB (2005) A disposable electrochemical sensor for the rapid determination of levodopa. J Pharm Biomed Anal 39:54–49CrossRefGoogle Scholar
  57. 57.
    Leite FRF, Maroneze CM, Oliveira AB, Santos WTP, Damos FS, Luz RCS (2012) Development of a sensor for L-Dopa based on Co(DMG)2ClPy/multi-walled carbon nanotubes composite immobilized on basal plane pyrolytic graphite electrode. Bioelectrochemistry 86:22–29CrossRefGoogle Scholar
  58. 58.
    Teixeira MFS, Bergamini MF, Marques CMP, Bocchi N (2004) Voltammetric determination of L-dopa using an electrode modified with trinuclear ruthenium ammine complex (Ru-red) supported on Y-type zeolite. Talanta 63:1083–1088CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of ChemistryFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Federal Institute of Education, Science and Technology of Rio Grande do Sul (IFRS), Campus FelizFelizBrazil

Personalised recommendations