Skip to main content

(Re-)crystallization mechanism of highly oriented Si-microwire arrays by TEM analysis

Abstract

Novel anodes for Li-ion batteries have been characterized by transmission electron microscopy (TEM). The anodes consist of arrays of ordered silicon microwires obtained from conventional silicon wafers by controlled etching processes. Suitable preparation methods for wires in the micrometer range have been tested, optimized, and subsequently applied. Ex situ TEM measurements have been performed for pristine as well as for electrochemically cycled wires that have been charged and discharged for several times. The influences of cycling rate, an electrolyte additive, as well as elevated temperatures on the anodes’ stability have been investigated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    CAS  Article  Google Scholar 

  2. Quiroga-González E, Ossei-Wusu E, Carstensen J, Föll H (2011) How to make optimized arrays of Si wires suitable as superior anode for li-ion batteries. ECS Trans 35(34):3–15

    Article  Google Scholar 

  3. Nazri GA, Pistoia G (2009) Lithium batteries: science and technology. Springer, New York

    Google Scholar 

  4. Leblanc D, Wang C, He Y, Bélanger D, Zaghib K (2015) In situ transmission electron microscopy observations of lithiation of spherical silicon nanopowder produced by induced plasma atomization. J Power Sources 279:522–527

    CAS  Article  Google Scholar 

  5. Nie M, Abraham DP, Chen Y, Bose A, Lucht BL (2013) Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy. J Phys Chem C 117:13403–13412

    CAS  Article  Google Scholar 

  6. Liu XH, Liu Y, Kushima A, Zhang S, Zhu T, Li J, Huang JY (2012) In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv Energy Mater 2:722–741

    CAS  Article  Google Scholar 

  7. Quiroga-González E, Carstensen J, Föll H (2013) Optimal conditions for fast charging and long cycling stability of silicon microwire anodes for lithium ion batteries, and comparison with the performance of other Si anode concepts. Energies 6(10):5145–5156

    Article  Google Scholar 

  8. Hansen S, Quiroga-González E, Carstensen J, Föll H (2016) Size-dependent cyclic voltammetry study of silicon microwire anodes for lithium ion batteries. Electrochim Acta 217:283–291

    CAS  Article  Google Scholar 

  9. Hölken I, Hoppe M, Mishra YK, Gorb SN, Adelung R, Baum MJ (2016) Complex shaped ZnO nano- and microstructure based polymer composites: mechanically stable and environmentally friendly coatings for potential antifouling applications. Phys Chem Chem Phys 18:7114

    Article  Google Scholar 

  10. Li C, Tan J, Li H, Yin D, Gu J, Zhang B, Zhang Q (2015) Thiol–isocyanate click reaction in a Pickering emulsion: a rapid and efficient route to encapsulation of healing agents. Polym Chem 6:7100

    CAS  Article  Google Scholar 

  11. Ostadhossein A, Cubuk ED, Tritsaris GA, Kaxiras E, Zhang S, van Duin ACT (2015) Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF. Phys Chem Chem Phys 17:3832

    CAS  Article  Google Scholar 

  12. Berla LA, Lee SW, Ryu I, Cui Y, Nix WD (2014) Robustness of amorphous silicon during the initial lithiation/delithiation cycle. J. of Power Sources 258:253–259

    CAS  Article  Google Scholar 

  13. Setiadi J, Arnold MD, Ford MJ (2013) Li-ion adsorption and diffusion on two-dimensional silicon defects: a first principles study. ACS Appl Mater Interfaces 5:10690–10695

    CAS  Article  Google Scholar 

  14. Iaboni DSM, Obrovac MN (2016) Li15Si4 formation in silicon thin film negative electrodes. J Electrochem Soc 163(2):A255–A261

    CAS  Article  Google Scholar 

  15. Lee SW, McDowell MT, Berla LA, Nix WD, Cu Y (2012) Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. PNAS 109(11):4080–4085

    CAS  Article  Google Scholar 

  16. Shi F, Song Z, Ross PN, Somorjai GA, Ritchie RO, Komvopoulos K (2016) Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries. Nat Commun 7:11886

    CAS  Article  Google Scholar 

  17. Ryu I, Choi JW, Cui Y, Nix WD (2011) Size-dependent fracture of Si nanowire battery anodes. J Mech Phys Solids 59:1717–1730

    CAS  Article  Google Scholar 

  18. Baek SH, Park SH, Bae EJ, Jeong YI, Noh BY, Kim JH (2013) Influence of the crystallographic orientation of silicon nanowires in a carbon matrix on electrochemical performance as negative electrode materials for lithium-ion batteries. J of Power Sources 244:515–520

    CAS  Article  Google Scholar 

  19. Sandu G, Brassart L, Gohy JF, Pardoen T, Melinte S, Vlad A (2014) Surface coating mediated swelling and fracture of silicon nanowires during lithiation. ACS Nano 8(9):9427–9436

    CAS  Article  Google Scholar 

  20. Luo L, Yang H, Yan P, Travis JJ, Lee Y, Liu N, Piper DM, Lee SH, Zhao P, George SM, Zhang JG, Cui Y, Zhang S, Ban C, Wang CM (2015) Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery. ACS Nano 9(5):5559–5566

    CAS  Article  Google Scholar 

  21. Reddy TB, Linden D (2011) Linden's handbook of batteries. McGraw-Hill, New York

    Google Scholar 

  22. Obrovac MN, Krause LJ (2007) Reversible cycling of crystalline silicon powder. J Electrochem Soc 154(2):A103–A108

    CAS  Article  Google Scholar 

  23. Quiroga-González E, Carstensen J, Föll H (2013) Good cycling performance of high-density arrays of Si microwires as anodes for li ion batteries. Electrochim Acta 101(SI):93–98

    Article  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the DFG “Elektrochemische und mikrostrukturelle Untersuchung der Prozesse in Anoden für Hochkapazitäts-Lithium-Ionen-Batterien basierend auf Si-Mikrodrahtanordnungen” (Fkz: FO 183/20–2). We thank Christin Szillus for FIB preparation and furthermore, Dr. Iris Hölken and Dr. Ulrich Schürmann for fruitful discussions and scientific support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Neubüser.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neubüser, G., Hansen, S., Duppel, V. et al. (Re-)crystallization mechanism of highly oriented Si-microwire arrays by TEM analysis. J Solid State Electrochem 21, 3421–3427 (2017). https://doi.org/10.1007/s10008-017-3672-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3672-6

Keywords

  • Lithium-ion-battery
  • Silicon microstructure
  • Transmission electron microscopy