Advertisement

Journal of Solid State Electrochemistry

, Volume 21, Issue 9, pp 2655–2663 | Cite as

Hydrothermal synthesis of brookite TiO2 nanoparticles for dye-sensitized solar cell

  • C. G. EzemaEmail author
  • A. C. Nwanya
  • B. E. Ezema
  • Malik Maaza
  • P. O. Ukoha
  • F. I. Ezema
Original Paper
  • 326 Downloads

Abstract

We obtained Tannin-4-azobenzoic acid (azo dye) by the conventional method of diazotization and coupling of aromatic amines. The properties of the azo dye were characterized via ultraviolet-visible (UV–vis), infrared (IR), and nuclear magnetic resonance (NMR) spectroscopy. Nanocrystalline titanium dioxide (TiO2) thin films were deposited by hydrothermal method onto fluorine-doped tin (IV) oxide (FTO)-coated glass substrate at 353 K for 4 h. The as-deposited and annealed films were characterized for structural, morphological, optical, thickness, and wettability properties. The synthesized metal free azo dye was used to sensitize the prepared TiO2 thin film with thickness of 26 μm. The photoelectrochemical (PEC) performance of TiO2 sensitized with the azo dye was evaluated in polyiodide (0.1 M KI + 0.01 M I2 + 0.1 M KCl) electrolyte at 40 mW cm−2 illumination intensity. The cell yielded a short circuit current of 2.82 mA, open circuit voltage of 314.3 mV, a fill factor of 0.30, and a photovoltaic conversion efficiency value of 0.64%.

Graphical abstract

Keywords

Azo dye Titanium dioxide Solar cell Photoelectrochemical studies 

Notes

Acknowledgements

Authors are grateful to Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur (M.S.), India. We also thank Engr. Emeka Okwuosa MD Oilserv Ltd. Group of Companies for generous sponsorship of April 2014 and August 2016 Nano conferences/workshops on applications of nanotechnology to energy, health &.Environment conference and for providing some research facilities.

References

  1. 1.
    Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photonics 6:162–169CrossRefGoogle Scholar
  2. 2.
    Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344CrossRefGoogle Scholar
  3. 3.
    Zou W, Visser C, Maduro JA, Pshenichnikov MS, Hummelen JC (2012) Broadband dye-sensitized upconversion of near-infrared light. Nat Photonics 6:560–564CrossRefGoogle Scholar
  4. 4.
    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  5. 5.
    Nakajima K, Ohta K, Katayanagi H, Mitsuke K (2011) Photoexcitation and electron injection processes in azo dyes adsorbed on nanocrystalline TiO2 films. Chem Phy Lett 510:228–233CrossRefGoogle Scholar
  6. 6.
    Alibabaei L, Kim JH, Wang M, Pootrakulchote N, Teuscher J, Di Censo D, Humphry-Baker R, Moser JE, Yu YJ, Kay KY, Zakeeruddin SM, Grätzel M (2010) Molecular design of metal-free D−π−A substituted sensitizers for dye-sensitized solar cells. Energy Environ Sci 3:1757CrossRefGoogle Scholar
  7. 7.
    Fischer MKR, Wenger S, Wang M, Mishra A, Zakeeruddin SM, Grätzel M, Bäuerle P (2010) D-π-A sensitizers for dye-sensitized solar cells: linear vs branched oligothiophenes. Chem Mater 22:1836–1845CrossRefGoogle Scholar
  8. 8.
    Clifford JN, Martínez-Ferrero E, Viterisi A, Palomares E (2011) Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chem Soc Rev 40:1635–1646CrossRefGoogle Scholar
  9. 9.
    Mishra A, Fischer MKR, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48:2474–2499CrossRefGoogle Scholar
  10. 10.
    Vig A, Sirbiladze K, Nagy HJ, Aranyosi P, Rusznák I, Sallay P (2006) The light stability of azo dyes and dyeings. The impact of the atmosphere on the light stability of dyeings with heterobifunctional reactive azo dyes. Dyes Pigments 72:16–22CrossRefGoogle Scholar
  11. 11.
    Raposo MMM, Sousa AMRC, Fonseca AMC, Kirsch G (2005) Thienylpyrrole azo dyes: synthesis, solvatochromic and electrochemical properties. Tetrahedron 61:8249–8256CrossRefGoogle Scholar
  12. 12.
    Slark AT, Hadgett PM (1999) The effect of specific interactions on dye transport in polymers above the glass transition. Polymer 40:4001–4011CrossRefGoogle Scholar
  13. 13.
    Hallas G, Choi JH (1999) Synthesis and properties of novel aziridinyl azo dyes from 2- aminothiophenes. Part 2. Application of some disperse dyes to polyester fibres. Dyes Pigments 40:119–129CrossRefGoogle Scholar
  14. 14.
    Ho MS, Natansohn A, Rochon P (1995) Azo polymers for reversible optical storage. 7. The effect of the size of the photochromic groups. Macromolecules 28:6124–6127CrossRefGoogle Scholar
  15. 15.
    Nabeshima Y, Shishido A, Kanazawa A, Shiono T, Ikeda T, Hiyama T (1997) Synthesis of novel liquid-crystalline thiophene derivatives and evaluation of their photoresponsive behavior. Chem Mater 9:1480–1487CrossRefGoogle Scholar
  16. 16.
    Iftime G, Labarthet FL, Natansohn A, Rochon P, Murti K (2002) Main chaincontaining azo-tetraphenyldiaminobiphenyl photorefractive polymers. Chem Mater 14:168–174CrossRefGoogle Scholar
  17. 17.
    Sharma GD, Suresh P, Sharma SK, Roy MS (2008) Photovoltaic properties of liquid state photoelectrochemical cells based on PPAT and a composite film of PPAT and nanocrystalline titanium dioxide. Synth Met 158:509–515CrossRefGoogle Scholar
  18. 18.
    Andr’es-Cast’an JM, Franco S, Villacampa B, Orduna J, P’erez-Tejada R (2015) New efficient tert-butyldiphenyl-4H-pyranylidene sensitizers for DSSCs. RSC Adv 5:106706CrossRefGoogle Scholar
  19. 19.
    Karaman M, Sarıipek F, Köysüren Ö, Yıldız HB (2013) Template assisted synthesis of photocatalytic titanium dioxide nanotubes by hot filament chemical vapor deposition method. App Surf Sci 283:993–998CrossRefGoogle Scholar
  20. 20.
    Chen M, Shen X, Wu Q, Li W, Diao G (2015) Template-assisted synthesis of core–shell α-Fe2O3@TiO2 nanorods and their photocatalytic property. J Mater Sci 50(11):4083–4094CrossRefGoogle Scholar
  21. 21.
    Zhao X, Zhu Y, Wang Y, Zhu L, Yang L, Sha Z (2015) Influence of anodic oxidation parameters of TiO2 Nanotube arrays on morphology and photocatalytic performance. J Nanomaterials 2015:104193 10 pagesGoogle Scholar
  22. 22.
    Abou-Helal MO, Seeber WT (2002) Preparation of TiO2 thin films by spray pyrolysis to be used as a photocatalyst. App Surf Sci 195(1–4):53–62CrossRefGoogle Scholar
  23. 23.
    Wang WB, Yanguas-Gil A, Kim YYD, Girolami GS, Abelso JR (2014) Chemical vapor deposition of TiO2 thin films from a new halogen-free precursor. J Vac Sci Technol A 32(6):061502CrossRefGoogle Scholar
  24. 24.
    Yamauchi S, Ima Y (2013) Plasma-assisted chemical vapor deposition of TiO2 thin films for highly hydrophilic performance. Cryst Struct Theory Appl 2013(2):1–7Google Scholar
  25. 25.
    Moazeni M, Hajipour H, Askari M, Nusheh M (2015) Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents. Mater Res Bulletin 61:70–75CrossRefGoogle Scholar
  26. 26.
    Rehan M, Lai X, Kale GM (2011) Hydrothermal synthesis of titanium dioxide nanoparticles studied employing in situ energy dispersive X-ray diffraction. CrystEngComm 13:3725–3732CrossRefGoogle Scholar
  27. 27.
    Leyva-Porras C, Toxqui-Teran A, Vega-Becerra O, Miki-Yoshida M, Rojas-Villalobos M, García-Guaderrama M, Aguilar-Martínez JA (2015) Low-temperature synthesis and characterization of anatase TiO2 nanoparticles by an acid assisted sol–gel method. J Alloy Compd 647:627–636CrossRefGoogle Scholar
  28. 28.
    Patra S, Andriamiadamanana C, Tulodziecki M, Davoisne C, Taberna P-L, Sauvage F (2016) Low-temperature electrodeposition approach leading to robust mesoscopic anatase TiO2 films. Sci Rep 6:21588CrossRefGoogle Scholar
  29. 29.
    Su Z, Zhang L, Jiang F, Hong M (2013) Formation of crystalline TiO2 by anodic oxidation of titanium. Prog Nat Sci 23(3):294–301CrossRefGoogle Scholar
  30. 30.
    Caratão B, Carneiro E, Sá P, Almeida B, Carvalho S (2014) Properties of electrospun TiO2 nanofibers. J Nanotech 2014:472132 5 pagesCrossRefGoogle Scholar
  31. 31.
    Manurung P, Putri Y, Simanjuntak W, Low IM (2013) Synthesis and characterisation of chemical bath deposited TiO2 thin-films. Ceram Int 39(1):255–259CrossRefGoogle Scholar
  32. 32.
    Mayabadi AH, Waman VS, Kamble MM, Ghosh SS, Gabhale BB, Rondiya SR, Rokade AV, Khadtare SS, Sath VG, Pathan HM, Gosavi SW, Jadkar SR (2014) Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room temperature by chemical bath deposition method. J Phys Chem Solids 75(2):182–187CrossRefGoogle Scholar
  33. 33.
    Hanaor DAH, Sorrell C C (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874CrossRefGoogle Scholar
  34. 34.
    Magne C, Cassaignon S, Lancel G, Pauporte T (2011) Brookite TiO2 nanoparticle films for dye-sensitized solar cells. ChemPhysChem 12:2461–2467CrossRefGoogle Scholar
  35. 35.
    Zhu H, Yang J, Feng S, Liu M, Zhang J, Li G (2011) Growth of TiO2 nanosheet-array thin films by quick chemical bath deposition for dye-sensitized solar cells. Appl Phys A 105:769–774CrossRefGoogle Scholar
  36. 36.
    Beyene HD, Ephriem Tadesse E (2014) Study of solvent effect on Uv-visible spectra of a newly synthesized azo-dye, 2-(3-carboxyl-4Hydroxylphenyl)-1-(4-Nitrophenyl) diazene (PNASA). Inter J Tech Enhancements Emerg Eng Res (IJTEEE) 2(12):23–29 ISSN 2347-4289Google Scholar
  37. 37.
    Al-Rubaie LARR, Mhessn RJ (2012) Synthesis and characterization of azo dye para red and new derivatives. E-J Chem 9(1):465–470CrossRefGoogle Scholar
  38. 38.
    Al-Sheikh M, Hanadi Y, Medrasi HY, Sadek KU, Mekheimer RA (2014) Synthesis and spectroscopic properties of new azo dyes derived from 3-Ethylthio-5-cyanomethyl-4-phenyl-1,2,4-triazole. Molecules 19:2993–3003CrossRefGoogle Scholar
  39. 39.
    Paola AD, Bellardita M, Palmisano L (2013) Brookite, the least known TiO2 photocatalyst. Catalogue 3:36–73Google Scholar
  40. 40.
    Bellardita M, Di Paola A, Palmisano L, Parrino F, Buscarino G, Amadelli R (2011) Preparation and photoactivity of samarium loaded anatase, brookite and rutile catalysts. Appl Catal B 104:291–299CrossRefGoogle Scholar
  41. 41.
    Hongying Y, Sukang Z, Ning P (2004) Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved Scheme. J Appl Polymer Sci 92:3201–3210CrossRefGoogle Scholar
  42. 42.
    Ali E, Ferydon B, Mahmoud N (2013) Electrosynthesis and absorbance spectra of TiO2 nanoparticles dispersed in the conductive polymer. Appl Surf Sci 283:1060–1064CrossRefGoogle Scholar
  43. 43.
    Grätzel M, Rotzinger FP (1985) The influence of the crystal lattice structure on the conduction band energy of oxides of titanium(IV). Chem Phys Lett 118:474–477CrossRefGoogle Scholar
  44. 44.
    Landmann M, Rauls E, Schmidt WG (2012) The electronic structure and optical response of rutile, anatase and brookite TiO2. J Phys-Condens Mat 24:195503–195508CrossRefGoogle Scholar
  45. 45.
    Ezema CG, Nwanya AC, Ezema BE, Patil BH, Bulakhe RN, Ukoha PO, Lokhande CD, Maaza M, Ezema FI (2016) Photo-electrochemical studies of chemically deposited nanocrystalline meso-porous n-type TiO2 thin films for dye-sensitized solar cell (DSSC) using simple synthesized azo dye. Appl Phys A 122:435CrossRefGoogle Scholar
  46. 46.
    Xie J, Lü X, Liu J, Shu H (2009) Brookite titania photocatalytic nanomaterials: synthesis, properties, and applications. Pure Appl Chem 81:2407–2415CrossRefGoogle Scholar
  47. 47.
    Lin H, Li L, Zhao M, Huang X, Chen X, Li G, Yu R (2012) Synthesis of high-quality brookite TiO2 single-crystalline nanosheets with specific facets exposed: tuning catalysts from inert to highly reactive. J Am Chem Soc 134:8328–8331CrossRefGoogle Scholar
  48. 48.
    Zallen R, Moret MP (2006) The optical absorption edge of brookite TiO2. Solid State Commun 137:154–157CrossRefGoogle Scholar
  49. 49.
    Koelsch M, Cassaignon S, Guillemoles JF, Jolivet J-P (2002) Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol–gel method. Thin Solid Films 403–404:312–319CrossRefGoogle Scholar
  50. 50.
    Jung H-G, Kang YS, Sun Y-K (2010) Anatase TiO2 spheres with high surface area and mesoporous structure via a hydrothermal process for dye-sensitized solar cells. Electrochim Acta 55:4637–4641CrossRefGoogle Scholar
  51. 51.
    Deng Q, Wei M, Ding X, Jiang L, Ye B, Wei K (2008) Brookite-type TiO2 nanotubes. Chem Commun 31(31):3657–3659CrossRefGoogle Scholar
  52. 52.
    Deng Q, Wei M, Hong Z, Ding X, Jiang L, Wei K (2010) Selective synthesis of rutile, anatase and brookite nanorods by a hydrothermal route. Curr Nanosci 6:479–482CrossRefGoogle Scholar
  53. 53.
    Buonsanti R, Grillo V, Carlino E, Giannini C, Kipp T, Cingolani R, Cozzoli PD (2008) Nonhydrolytic synthesis of high-quality anisotropically shaped brookite TiO2 nanocrystals. J Am Chem Soc 130:11223–11233CrossRefGoogle Scholar
  54. 54.
    Hu W, Li L, Li G, Tang C, Sun L (2009) High-quality brookite TiO2 flowers: synthesis, characterization, and dielectric performance. Cryst Growth Des 9:3676–3682CrossRefGoogle Scholar
  55. 55.
    Zhao B, Chen F, Jiao Y, Zhang J (2010) Phase transition and morphological evolution of titania/titanate nanomaterials under alkalescent hydrothermal treatment. J Mater Chem 20:7990–7997CrossRefGoogle Scholar
  56. 56.
    Zhang L, Cole JM, Waddell PG, Low KS, Liu X (2013) Relating electron donor and carboxylic acid anchoring substitution effects in azo dyes to dye-sensitized solar cell performance. ACS Sustain Chem Eng 1:1440–1452CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • C. G. Ezema
    • 1
    • 2
    Email author
  • A. C. Nwanya
    • 3
  • B. E. Ezema
    • 2
  • Malik Maaza
    • 4
    • 5
  • P. O. Ukoha
    • 2
  • F. I. Ezema
    • 3
  1. 1.National Centre for Energy Research and DevelopmentUniversity of NigeriaNsukkaNigeria
  2. 2.Department of Pure and Industrial ChemistryUniversity of NigeriaNsukkaNigeria
  3. 3.Department of Physics and AstronomyUniversity of NigeriaNsukkaNigeria
  4. 4.Nanosciences African Network (NANOAFNET), iThemba LABS-National Research FoundationSomerset WestSouth Africa
  5. 5.UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate StudiesUniversity of South Africa (UNISA)PretoriaSouth Africa

Personalised recommendations