Skip to main content
Log in

Electrochemical behavior of organosoluble gold nanoclusters and its application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This contribution described the electrochemical study of organosoluble gold nanoclusters (AuNCs).The AuNCs were characterized with UV-vis absorption spectrum, powder X-ray diffraction, and transmission electron microscopy as well as differential pulse voltammogram. Factors influencing the specific voltammogram of AuNCs including the electrodes, pulse parameters, and concentration of supporting electrolyte as well as the amount of nanoclusters are investigated, respectively. The electrochemical fingerprints of AuNCs are presented and the molecular formula, calculated by energy gap obtained from electrochemical fingerprints, was Au128(SR)54, where SR is phenylethyl thiolate. Based on the variation of the electrochemical fingerprints, the electrochemical in situ monitoring of the ligand exchange of AuNCs is initially performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li W, Sun Q, Su B (2013) Effect of chloride anion on the electrochemical chargingof gold nanoparticle films. J Solid State Electrochem 17:2429–2435

    Article  CAS  Google Scholar 

  2. Kurashige W, Yamaguchi M, Nobusada K, Negishi Y (2012) Ligand-induced stability of gold nanoclusters: thiolate versus selenolate. J Phys Chem Lett 3:2649–2652

    Article  CAS  Google Scholar 

  3. Das A, Li T, Nobusada K, Zeng Q, Rosi NL, Jin R (2012) Total structure and optical properties of a phosphine/thiolate-protected Au24nanocluster. J Am Chem Soc 134:20286–20289

    Article  CAS  Google Scholar 

  4. Shu T, Su L, Wang J, Li C, Zhang X (2015) Chemical etching of bovine serum albumin-protected Au25nanoclusters for label-free and separation-free detection of cysteami. Biosens Bioelectron 66:155–161

    Article  CAS  Google Scholar 

  5. Rosi N, Giljohann D, Thaxton C, Lytton-Jean A, Han M, Mirkin C (2006) Oligonucleotide- modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030

    Article  CAS  Google Scholar 

  6. Wohltjen H, Snow AW (1998) Colloidal metal-insulator-metal ensemble chemiresistor sensor. Anal Chem 70:2856–2859

    Article  CAS  Google Scholar 

  7. Huang C, Chiang C, Lin Z, Lee K, Chang H (2008) Bioconjugated gold nanodots and nanoparticles for protein assays based on photoluminescence quenching. Anal Chem80:1497–1504

  8. Lin C, Yang T, Lee C, Huang S, Sperling R, Zanella M, Li J, Shen J, Wang H, Yeh H, Parak W, Chang W (2009) Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 3:395–401

    Article  CAS  Google Scholar 

  9. Li G, Jin R (2013) Atomically precise gold nanoclusters as new model catalysts. Acc ChemRes 46:1749–1758

    Article  CAS  Google Scholar 

  10. Song Y, Fu F, Zhang J, Chai J, Kang X, Li P, Li S, Zhou H, Zhu M (2015) The magic Au60nanocluster: anew cluster-assembled material with five Au13building blocks. Angew ChemInt Ed 54:8430–8434

    Article  CAS  Google Scholar 

  11. Antonello S, Perera NV, Ruzzi M, Gascón JA, Maran F (2013) Interplay of charge state, lability, and magnetism in the molecule-like Au25(SR)18cluster. J Am Chem Soc 135:15585–15594

    Article  CAS  Google Scholar 

  12. Liao L, Zhou S, Dai Y, Liu L, Yao C, Fu C, Yang J, Wu Z (2015) Mono-mercury doping of Au25 and the HOMO/LUMO energies evaluation employing differential pulse voltammetry. J Am Chem Soc 137:9511–9514

    Article  CAS  Google Scholar 

  13. Toikkanen O, Ruiz V, Ro¨nnholm G, Kalkkinen N, Liljeroth P, Quinn BM (2008) Synthesis and stability of monolayer-protected Au38 clusters. J Am Chem Soc130:11049–11055

  14. Nimmala PR, Dass A (2014) Au99(SPh)42 nanoclusters: aromatic thiolateligand induced conversion of Au144(SCH2CH2Ph)60. J Am Chem Soc 136:17016–17023

  15. Zhang JZ (1997) Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: effects of size and surface. Acc Chem Res 30:423–429

    Article  CAS  Google Scholar 

  16. Yang Y, Chen S (2003) Surface manipulation of the electronic energy of subnanometer-sized gold clusters: an electrochemical and spectroscopic investigation. Nano Lett 3:75–79

    Article  CAS  Google Scholar 

  17. Zhu M, Lanni E, Garg N, Bier ME, Jin R (2008) Kinetically controlled, high-yield synthesis of Au25 clusters. J Am Chem Soc 130:1138–1139

    Article  CAS  Google Scholar 

  18. Kumara C, Zuo X, Cullen DA, Dass A (2014) Faradaurate-940: synthesis, mass spectrometry, electron microscopy, high-energy X-ray diffraction, and X-ray scattering study of Au940±20(SR)160±4 nanocrystals. ACS Nano 8:6431–6439

    Article  CAS  Google Scholar 

  19. Qian H, Zhu M, Andersen UN, Jin R (2009) Facile, large-scale synthesis of dodecanethiol-stabilized Au38clusters. J Phys Chem A 113:4281–4284

    Article  CAS  Google Scholar 

  20. Nimmala PR, Yoon B, Whetten RL, Landman U, Dass A (2013) Au67(SR)35nanoclusters: characteristic size-specific optical, electrochemical, structural properties and first-principles theoretical analysis. J Phys Chem A 117:504–517

    Article  CAS  Google Scholar 

  21. Qian H, Jin R (2009) Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. Nano Lett 9:4083–4087

    Article  CAS  Google Scholar 

  22. Wang D, Padelford JW, Ahuja T, Wang G (2015) Transitions in discrete absorption bands of Au130 clusters upon stepwise charging by spectroelectrochemistry. ACS Nano 9:8344–8351

    Article  CAS  Google Scholar 

  23. Zhang H, Ma L, Li P, Zheng J (2016) A novel electrochemical immunosensor based on nonenzymatic Ag@Au-Fe3O4 nanoelectrocatalyst for protein biomarker detection. Biosens Bioelectron 85:343–350

  24. Wu Z, MacDonald MA, Chen J, Zhang P, Jin R (2011) Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. J Am Chem Soc 133:9670–9673

    Article  CAS  Google Scholar 

  25. Qian HF, Jin R (2011) Ambient synthesis of Au144(SR)60nanoclusters in methanol. Chem Mater 23:2209–2217

    Article  CAS  Google Scholar 

  26. Liu C, Li G, Kauffman DR, Pang G, Jin R (2014) Synthesis of ultrasmall platinum nanoparticles and structural relaxation. J Colloid Interface Sci 423:123–128

    Article  CAS  Google Scholar 

  27. Quinn BM, Liljeroth P, Ruiz V, Laaksonen T, Kontturi K (2003) Electrochemical resolution of 15 oxidation states for monolayer protected gold nanoparticles. J Am Chem Soc125:6644–6645

  28. Hicks JF, Miles DT, Murray RW (2002) Quantized double-layer charging of highly monodisperse metal manoparticles. J Am Chem Soc124:13322–13328

  29. Park S, Lee D (2012) Synthesis and electrochemical and spectroscopic characterization of biicosahedral Au25 clusters. Langmuir 28:7049–7054

    Article  CAS  Google Scholar 

  30. Rambukwella M, Sementa L, Barcaro G, Fortunelli A, Dass A (2015) Organosoluble Au102(SPh)44 nanomolecules: synthesis, isolation, compositional assignment, core conversion, optical spectroscopy, electrochemistry, and theoretical analysis. J Phys Chem C 119:25077–25084

    Article  CAS  Google Scholar 

  31. Koivisto J, Malola S, Kumara C, Dass A, Hakkinen H, Pettersson M (2012) Experimental and theoretical determination of the optical gap of the Au144(SC2H4Ph)60 cluster and the (Au/Ag)144(SC2H4Ph)60 nanoalloys. J Phys Chem Lett 3:3076–3080

    Article  CAS  Google Scholar 

  32. Dass A (2009) Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing. J Am Chem Soc 131:11666–11667

    Article  CAS  Google Scholar 

  33. Tsai DH, Frank WD, Robert IM, Tae JC, Michael RZ, Vincent AH (2010) Competitive adsorption of thiolated tolyethylene glycol and mercaptopropionic acid on gold nanoparticles measured by physical characterization methods. Langmuir 26:10325–10333

    Article  CAS  Google Scholar 

  34. Jupally VR, Kota R, Dornshuld EV, Mattern DL, Tschumper GS, Jiang D, Dass A (2011) Interstaple dithiol cross-linking in Au25(SR)18 nanomolecules: a combined mass spectrometric and computational study. J Am Chem Soc133:20258–20266

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (no. 21575113) and the Scientific Research Foundation of Shaanxi Provincial Key Laboratory (16JS101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, C., Zhang, H. & Zheng, J. Electrochemical behavior of organosoluble gold nanoclusters and its application. J Solid State Electrochem 21, 3029–3035 (2017). https://doi.org/10.1007/s10008-017-3645-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3645-9

Keywords

Navigation