Skip to main content
Log in

Wilhelm Ostwald’s role in the genesis and evolution of the Nernst equation

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The historical origin of the Nernst equation can be traced back to Helmholtz’ treatment of the thermodynamics of galvanic cells and to Gibbs’ masterwork “On the Equilibrium of Heterogeneous Substances”. However, Nernst himself used a model of the metal/solution interface based on Arrhenius’ dissociation theory, together with some aspects of van’t Hoff’s osmotic pressure theory. Bancroft performed some initial studies of redox chains (cells) in Ostwald’s laboratory. Peters has advanced these studies and published an equation correctly describing the potential of an inert electrode in a solution containing a dissolved reversible redox pair. Riesenfeld has treated interfaces of immiscible electrolyte solutions and the partition equilibria of ions. Luther has shown how standard potentials of elements possessing several redox states are related. Fredenhagen was the first to understand that the series of standard potentials are solvent dependent. Nernst, Bancroft, Peters, Luther and Fredenhagen were pupils of Ostwald; Riesenfeld and Fredenhagen were students of Nernst. Indeed, the presiding genius of the whole endeavour was clearly Friedrich Wilhelm Ostwald. This new survey of the genesis and evolution of what we now call Nernst equation reveals the influence of Ostwald’s ideas on the theorizing process, and it is concluded that his share in the development of the modern theory deserves greater recognitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bockris JO’M, Reddy AKN, Gamboa-Aldeco M (2000) Modern electrochemistry, vol 2A. Kluwer Academic, Plenum Press, New York, p 1058

  2. Lange E, Göhr H (1962) Thermodynamische elektrochemie. Dr. Alfred Hüthig Verlag, Heidelberg

    Google Scholar 

  3. Scholz F (ed) (2010) Electroanalytical methods—guide to experiments and applications, 2nd edn. Springer, Berlin

    Google Scholar 

  4. Burgot J-L (2012) Ionic equilibria in analytical chemistry. Springer, Berlin, p 30

    Book  Google Scholar 

  5. Bobacka J (2012) Nernst equation. In: Electrochemical Dictionary. 2nd ed, Bard AJ, Inzelt G, Scholz F (eds). Springer, Berlin, p 615

  6. Helmholtz H von (1847) Berlin, Reimer. Reprinted in: Ostwald‘ Klassiker der exacten Wissenschaften, 1889, Nr 1, Engelmann, Leipzig. English translations are available online.

  7. Thomson W (1851) Phil Mag 4:429–444

    Google Scholar 

  8. Helmholtz H (1877) Monatsber kgl preuss Akad Wiss 713–726

  9. Abhandlungen zur Thermodynamik von H. Helmholtz (1902) Planck M (edt) Engelmann, Leipzig (reprinted: 2013. Servus Verlag, Hamburg)

  10. Gibbs JW (1906) The scientific papers of J. Willard Gibbs, Longmans Green, London; reprinted 1993, Ox Bow Press Woodbridge, vol I, pp 331 (This part was originally published in Trans Conn Acad (1878) 3:501–520)

  11. Gibbs JW (1892) Thermodynamische Studien. Translated by W. Ostwald. Engelmann, Leipzig, p 396

    Google Scholar 

  12. Nernst W (1921) Naturwiss 9:699–702

    Article  Google Scholar 

  13. Nernst W (1889) Z physik Chem 4:129–181

    Google Scholar 

  14. Ostwald W (1927) Lebenslinien, Vol 2, Engelmann, Leipzig. (English Translation: Ostwald W (2017) The Autobiography. Edts: RS Jack, F Scholz, Springer, Berlin)

  15. Nernst W (1988) Z Phys Chem (Leipzig) 2:613–637

    Google Scholar 

  16. Planck M (1890) Ann Phys 275:161–186

    Article  Google Scholar 

  17. Nernst W (1889) Z Phys Chem (Leipzig) 4:129–181

    Google Scholar 

  18. Nernst W (1889) Die elektromotorische Wirksamkeit der Jonen. Engelmann, Leipzig

    Google Scholar 

  19. van’t Hoff JH (1887) Z Phys Chem (Leipzig) 1:481–508

    Google Scholar 

  20. Arrhenius S (1884) Recherches sur la conductibilité galvanique des électrolytes. Première partie: La conductibilité des solution aqueuses extrêmement diluées déterminée au moyen du dépolarisateur. Bihang till Kongl. Svenska vetenskaps-akademiens handlingar 8:No. 13; Seconde partie: Théorie chimique des électrolytes. Bihang till Kongl. Svenska vetenskaps-akademiens handlingar 8:No. 14. Kongl Boktryckeriet, Stockholm

  21. Arrhenius S (1887) Z Phys Chem (Leipzig) 1:632–648

    Google Scholar 

  22. Ostwald W (2017) The autobiography. Edts: RS Jack, F Scholz, Springer, Berlin, pp 157

  23. Ostwald W (1888) Z Phys Chem (Leipzig) 2:36–37

    Google Scholar 

  24. Jorissen WP (1938) Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW), Jaarboek, 1938–1939. Amsterdam, pp:239–243

  25. van Laar JJ (1907) Lehrbuch der theoretischen Elektrochemie. Engelmann, Leipzig, van Looy, Amsterdam, pp 119–129

    Google Scholar 

  26. Guggenheim EA (1928) J Phys Chem 33:842–849

    Article  Google Scholar 

  27. van’t Hoff JH (1887) Z Phys Chem (Leipzig) 1:481–508 (English translation: (1995) J Membrane Sc 100:39–44)

    Google Scholar 

  28. Arrhenius S (1901) Lehrbuch der Elektrochemie. Quandt & Händel, Leipzig, p 230

    Google Scholar 

  29. Bargel HJ, Schulze G (edts) (2012) Weerkstoffkunde. Springer, Berlin, p 69

  30. De Marco R (1994) Anal Chem 66:3202–3207

    Article  CAS  Google Scholar 

  31. Yu TR, Ji GL (1993) Electrochemical methods in soil and water research. Pergamon Press, Oxford, p 209

    Google Scholar 

  32. Meyer L (1889) Z Phys Chem (Leipzig) 5:23–27

    Google Scholar 

  33. van Laar JJ (1894) Z Phys Chem (Leipzig) 15:457–497

    Google Scholar 

  34. von Türin V (1890) Z Phys Chem (Leipzig) 5:340–348

    Google Scholar 

  35. von Türin V (1891) Z Phys Chem (Leipzig) 7:221–222

    Google Scholar 

  36. Shreder IF (1907) Zapiski Gornago Instituta Imperatritsy Ekateriny II 1, pp I–III

    Google Scholar 

  37. Kremann R, Müller R (1930) Elektromotorische Kräfte. Elektrolyse und polarisation. In Walden P, Drucker C (edts) Handbuch der allgemeinen Chemie, vol VIII, Akademische Verlagsgesellschaft, Leipzig, p 141 and 158

  38. Kireev V (1963) Kratkiy kurs fizicheskoy khimii, 3rd edn. Goskhimizdat, Moskva, p 413

    Google Scholar 

  39. Budreyko EA (1958) Zhur fiz khim 32:2650–2652

    Google Scholar 

  40. Meyer G (1890) Ann Phys 267:244–263

    Article  Google Scholar 

  41. Stock JT (2003) Ostwald’s American Students. Apparatus, Techniques and Careers. Plaidswede Publishing, Concord, pp 49–56

    Google Scholar 

  42. Bancroft WD (1893) Z Phys Chem (Leipzig) 12:289–297

    Google Scholar 

  43. Katz E (2012) Ostwald, Friedrich Wilhelm. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical Dictionary, 2nd edn. Springer, Berlin, p 660

    Google Scholar 

  44. Ostwald W (1894) Z Phys Chem (Leipzig) 15:399–408

    CAS  Google Scholar 

  45. Ostwald W (1893) Lehrbuch der allgemeinen Chemie. In: Chemische Energie, vol I, part II. Engelmann, Leipzig, p 808

    Google Scholar 

  46. Peters R (1898) Ueber Oxidations- und Reduktionsketten und den Einfluss komplexer Ionen auf ihre elektromotorische Kraft. Engelmann, Leipzig

    Google Scholar 

  47. Peters R (1898) Z Phys Chem (Leipzig) 26:193–236

    CAS  Google Scholar 

  48. Peters R (1908) Chemie für Zollbeamte. Selbstverkag des Verfassers, Dresden (180 pages)

    Google Scholar 

  49. Beneke K (2005) Robert (Thomas Dietrich) Luther (02.01.1868 [21.12.1867] Moskau - 17.04.1945 Dresden) und seine photochemischen Arbeiten. Verlag Reinhard Knof, Nehmten ISBN 3-934413-01-3 (http://www.uni-kiel.de/anorg/lagaly/group/klausSchiver/luther.pdf)

    Google Scholar 

  50. Scholz F (2012) Luther, Robert Thomas Diedrich. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical Dictionary, 2nd edn. Springer, Berlin, p 571

    Google Scholar 

  51. Luther R, Wilson R (1900) Z Phys Chem (Leipzig) 34:488–494

    CAS  Google Scholar 

  52. Luther R (1901) Z Phys Chem (Leipzig) 36:385–404

    CAS  Google Scholar 

  53. Scholz F (2012) Riesenfeld, Ernst Hermann. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical Dictionary, 2nd edn. Springer, Berlin, p 810

    Google Scholar 

  54. Riesenfeld EH (1901) Ueber elektrolytische Erscheinungen und elektromotorische Kräfte an der Grenzfläche zweier Lösungsmittel (on electrolytic phenomena and electromotive forces at the interface between two solvents). Dieterich’sche Universitäts-Buchdruckerei, Göttingen

    Google Scholar 

  55. Riesenfield EH (1902) Ann Phys 313:600–624

    Article  Google Scholar 

  56. Nernst W (1892) Z Phys Chem (Leipzig) 9:137–142

    Google Scholar 

  57. Inzelt G (2012) Bugarszky, István. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical Dictionary, 2nd edn. Springer, Berlin, pp 87–88

    Google Scholar 

  58. Inzelt G (2015) Hungarian comets in the sky of electrochemistry. In: Electrochemistry in a divided world. F Scholz (edt), Springer, Berlin

  59. Bugarszky I (1897) Magyar Chem Folyóirat 3:38–46

    Google Scholar 

  60. Bugarszky I (1897) Z Anorg Chem 14:145–163

    Article  Google Scholar 

  61. Scholz F (2012) Fredenhagen, Karl (Carl). In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical Dictionary, 2nd edn. Springer, Berlin, pp 380–381

    Google Scholar 

  62. Fredenhagen K (1927) Z Phys Chem (Leipzig) 128:1–24–239–265

    Google Scholar 

  63. Inzelt G (2014) ChemTexts 1:2

    Article  Google Scholar 

  64. Seeber R, Zanardi C, Inzelt G (2016) ChemTexts 2:8

    Article  Google Scholar 

  65. Samec Z (2012) Distribution (Nernst) potential. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical Dictionary, 2nd edn. Springer, Berlin, pp 734–735

    Google Scholar 

  66. Ostwald (1896) Elektrochemie, ihre Geschichte und Lehre. Veit Comp, Leipzig (Engl translation Ostwald W (1980) Electrochemistry, history and theory, 2 vols, Amerind Publ, New Delhi)

  67. Stock JT (2003) Ostwald’s American Students. Apparatus, Techniques and Careers. Plaidswede Publishing, Concord

    Google Scholar 

  68. Splicke-Liss CG (2009) Der Wirkungskreis von Wilhelm Ostwalds Leipziger Schule der physikalischen Chemie. Vol 2 of Beiträge zur Geschichte der Pharmazie und Chemie. H. Remane (edt), Drei Birken Verlag, Freiberg

  69. Bensaude-Vincente B (2005) Revisiting the controversy on energetics. In: Wilhelm Ostwald at the crossroads between chemistry, philosophy and media culture. In: Görs B, Psarros N, Ziche P (eds) Leipziger Schriften zur Philosophie 12. Universitätsverlag, Leipzig, p 13

    Google Scholar 

  70. Kortüm G (1962) Lehrbuch der Elektrochemie. 3rd ed, Verlag Chemie, Weinheim (English translations: Kortüm G, Bockris J O’M (1951) Textbook of Electrochemistry. 2 vol, Elsevier, New York

Download references

Acknowledgements

I am very thankful to Professor Stephen Fletcher (Loughborough, UK) and Professor György Inzelt (Budapest, Hungary) for most valuable suggestions and comments, and to Dr. Elza Arminovna Zakharova (Tomsk, Russia) for providing copies of papers published by von Türin in Russian journals and for providing the obituary of von Türin, published by Shreder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Scholz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholz, F. Wilhelm Ostwald’s role in the genesis and evolution of the Nernst equation. J Solid State Electrochem 21, 1847–1859 (2017). https://doi.org/10.1007/s10008-017-3619-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3619-y

Keywords

Navigation