Advertisement

Journal of Solid State Electrochemistry

, Volume 21, Issue 7, pp 1939–1964 | Cite as

Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density

  • Tobias PlackeEmail author
  • Richard Kloepsch
  • Simon Dühnen
  • Martin WinterEmail author
Review

Abstract

Since their market introduction in 1991, lithium ion batteries (LIBs) have developed evolutionary in terms of their specific energies (Wh/kg) and energy densities (Wh/L). Currently, they do not only dominate the small format battery market for portable electronic devices, but have also been successfully implemented as the technology of choice for electromobility as well as for stationary energy storage. Besides LIBs, a variety of different technologically promising battery concepts exists that, depending on the respective technology, might also be suitable for various application purposes. These systems of the “next generation,” the so-called post-lithium ion batteries (PLIBs), such as metal/sulfur, metal/air or metal/oxygen, or “post-lithium technologies” (systems without Li), which are based on alternative single (Na+, K+) or multivalent ions (Mg2+, Ca2+), are currently being studied intensively. From today’s point of view, it seems quite clear that there will not only be a single technology for all applications (technology monopoly), but different battery systems, which can be especially suitable or combined for a particular application (technology diversity). In this review, we place the lithium ion technology in a historical context and give insights into the battery technology diversity that evolved during the past decades and which will, in turn, influence future research and development.

Keywords

Lithium ion batteries Lithium metal batteries Post-lithium ion batteries Energy density History of batteries 

Notes

Acknowledgements

The authors wish to thank the German Ministry of Education and Research (BMBF) for funding this work in the project “BenchBatt” (03XP0047A). The authors also want to thank Andre Bar for the preparation of various graphics for this manuscript.

References

  1. 1.
    IEA (2017) https://www.iea.org/ (Accessed January 12, 2017)
  2. 2.
    Nagaura T (1991) Prog Batteries Solar Cells 10:218Google Scholar
  3. 3.
    Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100(1–2):101–106CrossRefGoogle Scholar
  4. 4.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRefGoogle Scholar
  5. 5.
    Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4269CrossRefGoogle Scholar
  6. 6.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657CrossRefGoogle Scholar
  7. 7.
    Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430CrossRefGoogle Scholar
  8. 8.
    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262CrossRefGoogle Scholar
  9. 9.
    Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295CrossRefGoogle Scholar
  10. 10.
    Wagner R, Preschitschek N, Passerini S, Leker J, Winter M (2013) Current research trends and prospects among the various materials and designs used in lithium-based batteries. J Appl Electrochem 43(5):481–496CrossRefGoogle Scholar
  11. 11.
    Crabtree G, Kócs E, Trahey L (2015) The energy-storage frontier: lithium-ion batteries and beyond. MRS Bull 40(12):1067–1078CrossRefGoogle Scholar
  12. 12.
    Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29CrossRefGoogle Scholar
  13. 13.
    Schipper F, Aurbach D (2016) A brief review: past, present and future of lithium ion batteries. Russ J Electrochem 52(12):1095–1121CrossRefGoogle Scholar
  14. 14.
    Deng D (2015) Li-ion batteries: basics, progress, and challenges. Energy Sci Eng 3(5):385–418CrossRefGoogle Scholar
  15. 15.
    Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164(1):A5019–A5025CrossRefGoogle Scholar
  16. 16.
    Tarascon JM (2016) The Li-ion battery: 25 years of exciting and enriching experiences. Electrochem Soc Interface 25(3):79–83CrossRefGoogle Scholar
  17. 17.
    Besenhard JO, Winter M (1998) Insertion reactions in advanced electrochemical energy storage. Pure Appl Chem 70(3):603–608CrossRefGoogle Scholar
  18. 18.
    Andre D, Kim S-J, Lamp P, Lux SF, Maglia F, Paschos O, Stiaszny B (2015) Future generations of cathode materials: an automotive industry perspective. J Mater Chem A 3:6709–6732CrossRefGoogle Scholar
  19. 19.
    Patry G, Romagny A, Martinet S, Froelich D (2014) Cost modeling of lithium-ion battery cells for automotive applications. Energy Sci Eng 3(1):71–82CrossRefGoogle Scholar
  20. 20.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29CrossRefGoogle Scholar
  21. 21.
    Capsoni D, Bini M, Ferrari S, Quartarone E, Mustarelli P (2012) Recent advances in the development of Li-air batteries. J Power Sources 220:253–263CrossRefGoogle Scholar
  22. 22.
    Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2012) A critical review of Li/air batteries. J Electrochem Soc 159(2):R1–R30CrossRefGoogle Scholar
  23. 23.
    Bresser D, Passerini S, Scrosati B (2013) Recent progress and remaining challenges in sulfur-based lithium secondary batteries—a review. Chem Commun 49(90):10545–10562CrossRefGoogle Scholar
  24. 24.
    Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114(23):11751–11787CrossRefGoogle Scholar
  25. 25.
    Canepa P, Sai Gautam G, Hannah DC, Malik R, Liu M, Gallagher KG, Persson KA, Ceder G (2017) Odyssey of multivalent cathode materials: open questions and future challenges. Chem Rev 117(5):4287–4341Google Scholar
  26. 26.
    Besenhard JO, Winter M (2002) Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. ChemPhysChem 3(2):155–159CrossRefGoogle Scholar
  27. 27.
    Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322Google Scholar
  28. 28.
    Janek J, Zeier WG (2016) A solid future for battery development. Nature Energy 1:16141CrossRefGoogle Scholar
  29. 29.
    Nelson P, Gallagher K, Bloom I, Dees D (2011) Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles. Chemical Sciences and Engineering Division. Argonne National Laboratory, Argonne, IL USGoogle Scholar
  30. 30.
    Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5(7):7854–7863CrossRefGoogle Scholar
  31. 31.
    Gallagher KG, Goebel S, Greszler T, Mathias M, Oelerich W, Eroglu D, Srinivasan V (2014) Quantifying the promise of lithium-air batteries for electric vehicles. Energy Environ Sci 7(5):1555–1563CrossRefGoogle Scholar
  32. 32.
    Van Noorden R (2014) A better battery. Nature 507(7490):26–28CrossRefGoogle Scholar
  33. 33.
    Berg EJ, Villevieille C, Streich D, Trabesinger S, Novák P (2015) Rechargeable batteries: grasping for the limits of chemistry. J Electrochem Soc 162(14):A2468–A2475CrossRefGoogle Scholar
  34. 34.
    Gröger O, Gasteiger HA, Suchsland J-P (2015) Review—electromobility: batteries or fuel cells? J Electrochem Soc 162(14):A2605–A2622CrossRefGoogle Scholar
  35. 35.
    Wood Iii DL, Li J, Daniel C (2015) Prospects for reducing the processing cost of lithium ion batteries. J Power Sources 275:234–242CrossRefGoogle Scholar
  36. 36.
    Scrosati B (2011) History of lithium batteries. J Solid State Electrochem 15(7–8):1623–1630CrossRefGoogle Scholar
  37. 37.
    Placke T, Winter M (2015) Batterien für medizinische Anwendungen. Z Herz- Thorax- Gefäßchir 29(2):139–149CrossRefGoogle Scholar
  38. 38.
    Bieker P, Winter M (2015) Was braucht man für eine Super-Batterie? Chem Unserer Zeit 50(1):26–33CrossRefGoogle Scholar
  39. 39.
    Winter M, Besenhard JO (1999) Wiederaufladbare Batterien. Teil 1: Akkumulatoren mit wäßriger Elektrolytlösung. Chem Unserer Zeit 33(5):252–266CrossRefGoogle Scholar
  40. 40.
    Owens BB (1986) Batteries for implantable biomedical devices. Plenum Press, New YorkCrossRefGoogle Scholar
  41. 41.
    Rüdorff W, Hofmann U (1938) Über Graphitsalze. Z Anorg Allg Chem 238(1):1CrossRefGoogle Scholar
  42. 42.
    McCullough FP, Beale AF (1989) Electrode for use in secondary electrical energy storage devices—avoids any substantial change in dimension during repeated electrical charge and discharge cycles. US Pat 4:865,931Google Scholar
  43. 43.
    McCullough FP, Levine A, Snelgrove RV (1989) Secondary battery. US Pat 4:830,938Google Scholar
  44. 44.
    McCullough FP (1996) Flexible carbon fiber, carbon fiber electrode and secondary energy storage devices. US Pat 5:518,836Google Scholar
  45. 45.
    McCullough FP (1996) Flexible carbon fiber electrode with low modulus and high electrical conductivity, battery employing the carbon fiber electrode, and method of manufacture. US Pat 5:532,083Google Scholar
  46. 46.
    Carlin RT, Delong HC, Fuller J, Trulove PC (1994) Dual intercalating molten electrolyte batteries. J Electrochem Soc 141(7):L73–L76CrossRefGoogle Scholar
  47. 47.
    Carlin RT, Fuller J, Kuhn WK, Lysaght MJ, Trulove PC (1996) Electrochemistry of room-temperature chloroaluminate molten salts at graphitic and nongraphitic electrodes. J Appl Electrochem 26(11):1147–1160CrossRefGoogle Scholar
  48. 48.
    Dahn JR, Seel JA (2000) Energy and capacity projections for practical dual-graphite cells. J Electrochem Soc 147(3):899–901CrossRefGoogle Scholar
  49. 49.
    Seel JA, Dahn JR (2000) Electrochemical intercalation of PF6 into graphite. J Electrochem Soc 147(3):892–898CrossRefGoogle Scholar
  50. 50.
    Placke T, Bieker P, Lux SF, Fromm O, Meyer HW, Passerini S, Winter M (2012) Dual-ion cells based on anion intercalation into graphite from ionic liquid-based electrolytes. Z Phys Chem 226:391–407CrossRefGoogle Scholar
  51. 51.
    Placke T, Fromm O, Lux SF, Bieker P, Rothermel S, Meyer HW, Passerini S, Winter M (2012) Reversible intercalation of bis (trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J Electrochem Soc 159(11):A1755–A1765CrossRefGoogle Scholar
  52. 52.
    Rothermel S, Meister P, Schmuelling G, Fromm O, Meyer HW, Nowak S, Winter M, Placke T (2014) Dual-graphite cells based on the reversible intercalation of bis (trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte. Energy Environ Sci 7(10):3412–3423CrossRefGoogle Scholar
  53. 53.
    Read JA, Cresce AV, Ervin MH, Xu K (2014) Dual-graphite chemistry enabled by a high voltage electrolyte. Energy Environ Sci 7(2):617–620CrossRefGoogle Scholar
  54. 54.
    Zhang X, Tang Y, Zhang F, Lee C-S (2016) A novel aluminum–graphite dual-ion battery. Adv Energy Mater 6(11):1502588–1502593CrossRefGoogle Scholar
  55. 55.
    Tong X, Zhang F, Ji B, Sheng M, Tang Y (2016) Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv Mater 28(45):9979–9985CrossRefGoogle Scholar
  56. 56.
    Miyoshi S, Nagano H, Fukuda T, Kurihara T, Watanabe M, Ida S, Ishihara T (2016) Dual-carbon battery using high concentration LiPF6 in dimethyl carbonate (DMC) electrolyte. J Electrochem Soc 163(7):A1206–A1213CrossRefGoogle Scholar
  57. 57.
    Meister P, Siozios V, Reiter J, Klamor S, Rothermel S, Fromm O, Meyer HW, Winter M, Placke T (2014) Dual-ion cells based on the electrochemical intercalation of asymmetric fluorosulfonyl-(trifluoromethanesulfonyl) imide anions into graphite. Electrochim Acta 130 (0):625–633Google Scholar
  58. 58.
    Onagi N, Hibino E, Okada S, Ishihara T (2014) Nonaqueous electrolyte secondary battery. US20140186696 A1Google Scholar
  59. 59.
    Winter M, Besenhard JO (1999) Wiederaufladbare Batterien. Teil 2: Akkumulatoren mit nichtwäßriger Elektrolytlösung. Chem Unserer Zeit 33(6):320–332CrossRefGoogle Scholar
  60. 60.
    Peled E (1979) The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems - the solid electrolyte interphase model. J Electrochem Soc 126(12):2047–2051CrossRefGoogle Scholar
  61. 61.
    Besenhard JO, Winter M, Yang J, Biberacher W (1995) Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. J Power Sources 54(2):228–231CrossRefGoogle Scholar
  62. 62.
    Peled E, Golodnitsky D, Ardel G (1997) Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc 144(8):L208–L210CrossRefGoogle Scholar
  63. 63.
    Winter M, Appel WK, Evers B, Hodal T, Moller KC, Schneider I, Wachtler M, Wagner MR, Wrodnigg GH, Besenhard JO (2001) Studies on the anode/electrolyte interface in lithium ion batteries. Chem Mon 132(4):473–486CrossRefGoogle Scholar
  64. 64.
    Edström K, Herstedt M, Abraham DP (2006) A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries. J Power Sources 153(2):380–384CrossRefGoogle Scholar
  65. 65.
    Winter M (2009) The solid electrolyte interphase—the most important and the least understood solid electrolyte in rechargeable Li batteries. Z Phys Chem 223(10–11):1395–1406CrossRefGoogle Scholar
  66. 66.
    Verma P, Maire P, Novak P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55(22):6332–6341CrossRefGoogle Scholar
  67. 67.
    An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood III DL (2016) The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105:52–76CrossRefGoogle Scholar
  68. 68.
    Schranzhofer H, Bugajski J, Santner H, Korepp C, Möller K-C, Besenhard J, Winter M, Sitte W (2006) Electrochemical impedance spectroscopy study of the SEI formation on graphite and metal electrodes. J Power Sources 153(2):391–395CrossRefGoogle Scholar
  69. 69.
    Root MJ (2013) Medical Device Batteries. In: Brodd RJ (Ed.) Batteries for sustainability—selected entries from the Encyclopedia of Sustainability Science and Technology. Springer, New YorkGoogle Scholar
  70. 70.
    Eichinger G, Semrau G (1990) Lithiumbatterien I. Chemische Grundlagen. Chem Unserer Zeit 24(1):32–36CrossRefGoogle Scholar
  71. 71.
    Eichinger G, Semrau G (1990) Lithiumbatterien II. Entladereaktionen und komplette Zellen. Chem Unserer Zeit 24(2):90–96CrossRefGoogle Scholar
  72. 72.
    Brandt K (1994) Historical development of secondary lithium batteries. Solid State Ionics 69(3–4):173–183CrossRefGoogle Scholar
  73. 73.
    Watanabe K, Fukuda M (1970) Primary cell for electric batteries. US Patent No 3:536,532Google Scholar
  74. 74.
    Schneider AA, Moser JR (1972) Primary cells and iodine-containing cathodes therefore. US Patent 3:674,562Google Scholar
  75. 75.
    Julien C, Mauger A, Vijh A, Zaghib K (2016) Lithium batteries. Science and Technology, Springer International Publishing, SwitzerlandGoogle Scholar
  76. 76.
    Reddy TB (2010) Linden’s Handbook of Batteries, 4th Edition. McGraw-Hill Education, New YorkGoogle Scholar
  77. 77.
    Whittingham MS (1976) Electrical energy-storage and intercalation cehmistry. Science 192(4244):1126–1127CrossRefGoogle Scholar
  78. 78.
    Whittingham MS (1978) Chemistry of intercalation compounds—metal guests in chalcogenide hosts. Prog Solid State Chem 12(1):41–99CrossRefGoogle Scholar
  79. 79.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4301CrossRefGoogle Scholar
  80. 80.
    Pereira N, Amatucci GG, Whittingham MS, Hamlen R (2015) Lithium-titanium disulfide rechargeable cell performance after 35 years of storage. J Power Sources 280:18–22CrossRefGoogle Scholar
  81. 81.
    Fouchard D, Taylor JB (1987) The Molicel rechargeable lithium system—multicell aspects. J Power Sources 21(3–4):195–205CrossRefGoogle Scholar
  82. 82.
    Brandt K, Laman FC (1989) Reproducibility and reliability of rechargeable lithium molybdenum-disulfide batteries. J Power Sources 25(4):265–276CrossRefGoogle Scholar
  83. 83.
    Robillard C (2005) Proc IEEE Power Engineering Society General Meeting. San Francisco, CA, June 12–16:1223–1227Google Scholar
  84. 84.
    Dan P, Mengeritsky E, Aurbach D, Weissman I, Zinigrad E (1997) More details on the new LiMnO2 rechargeable battery technology developed at Tadiran. J Power Sources 68(2):443–447CrossRefGoogle Scholar
  85. 85.
    Mengeritsky E, Dan P, Weissman I, Zaban A, Aurbach D (1996) Safety and performance of Tadiran TLR-7103 rechargeable batteries. J Electrochem Soc 143(7):2110–2116CrossRefGoogle Scholar
  86. 86.
    Fouchard D, Lechner L (1993) Analysis of safety and reliability in secondary lithium batteries. Electrochim Acta 38(9):1193–1198CrossRefGoogle Scholar
  87. 87.
    Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10(10):725–763CrossRefGoogle Scholar
  88. 88.
    Heine J, Hilbig P, Qi X, Niehoff P, Winter M, Bieker P (2015) Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries. J Electrochem Soc 162(6):A1094–A1101CrossRefGoogle Scholar
  89. 89.
    Lazzari M, Scrosati B (1980) Cyclable lithium organic electrolyte cell based on 2 intercalation electrodes. J Electrochem Soc 127(3):773–774CrossRefGoogle Scholar
  90. 90.
    Scrosati B (1992) Lithium rocking chair batteries—an old concept. J Electrochem Soc 139(10):2776–2781CrossRefGoogle Scholar
  91. 91.
    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2—a new cathode material for batteries of high-energy density. Mater Res Bull 15(6):783–789CrossRefGoogle Scholar
  92. 92.
    Winter M, Besenhard JO (1999) Lithiated carbons. In: Besenhard JO (ed) Handbook of Battery Materials. Wiley-VCH Verlag GmbH, Weinheim, pp 383–418Google Scholar
  93. 93.
    Winter M, Möller K-C, Besenhard JO (2003) Carbonaceous and graphitic anodes. In: Nazri G-A, Pistoia G (eds) Lithium batteries: Science and Technology. Springer US, Boston, pp 145–194CrossRefGoogle Scholar
  94. 94.
    Juza R, Wehle V (1965) Lithium-Graphit-Einlagerungsverbindungen. Naturwissenschaften 52(20):560CrossRefGoogle Scholar
  95. 95.
    Bagouin M, Guerard D, Herold A (1966) Action de la vapeur de lithium sur le graphite. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie C 262(7):557Google Scholar
  96. 96.
    Guerard D, Herold A (1972) New method for preparation of insertion compounds of lithium in graphite. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie C 275(11):571Google Scholar
  97. 97.
    Guerard D, Herold A (1975) Intercalation of lithium into graphite and other carbons. Carbon 13(4):337–345CrossRefGoogle Scholar
  98. 98.
    Dey AN, Sullivan BP (1970) Electrochemical decomposition of propylene carbonate on graphite. J Electrochem Soc 117(2):222CrossRefGoogle Scholar
  99. 99.
    Arakawa M, Yamaki JI (1987) The cathodic decomposition of propylene carbonate in lithium batteries. J Electroanal Chem 219(1–2):273–280CrossRefGoogle Scholar
  100. 100.
    Fong R, von Sacken U, Dahn JR (1990) Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc 137(7):2009–2013CrossRefGoogle Scholar
  101. 101.
    Besenhard JO (1976) The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes. Carbon 14(2):111–115CrossRefGoogle Scholar
  102. 102.
    Gallus DR, Wagner R, Wiemers-Meyer S, Winter M, Cekic-Laskovic I (2015) New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pKa value. Electrochim Acta 184:410–416CrossRefGoogle Scholar
  103. 103.
    Wagner R, Streipert B, Kraft V, Reyes Jiménez A, Röser S, Kasnatscheew J, Gallus DR, Börner M, Mayer C, Arlinghaus HF (2016) Counterintuitive role of magnesium salts as effective electrolyte additives for high voltage lithium-ion batteries. Adv Mater Interfaces 3(15)Google Scholar
  104. 104.
    Wagner R, Korth M, Streipert B, Kasnatscheew J, Gallus DR, Brox S, Amereller M, Cekic-Laskovic I, Winter M (2016) Impact of selected LiPF6 hydrolysis products on the high voltage stability of lithium-ion battery cells. ACS Appl Mater Interfaces 8(45):30871–30878CrossRefGoogle Scholar
  105. 105.
    Yazami R, Touzain P (1983) A reversible graphite-lithium negative electrode for electrochemical generators. J Power Sources 9(3):365–371CrossRefGoogle Scholar
  106. 106.
    Basu S (1981) Rechargeable battery. Bell Telephone Laboratories, US Patent 4:304,825Google Scholar
  107. 107.
    Murmann P, Streipert B, Kloepsch R, Ignatiev N, Sartori P, Winter M, Cekic-Laskovic I (2015) Lithium-cyclo-difluoromethane-1, 1-bis (sulfonyl) imide as a stabilizing electrolyte additive for improved high voltage applications in lithium-ion batteries. Phys Chem Chem Phys 17(14):9352–9358CrossRefGoogle Scholar
  108. 108.
    Ozawa K (1994) Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes—the LiCoO2/ C system. Solid State Ionics 69(3–4):212–221CrossRefGoogle Scholar
  109. 109.
    Megahed S, Scrosati B (1994) Lithium-ion rechargeable batteries. J Power Sources 51(1–2):79–104CrossRefGoogle Scholar
  110. 110.
    Bieker P, Winter M (2016) Lithium-Ionen-Technologie und was danach kommen könnte. Chem Unserer Zeit 50(3):172–186CrossRefGoogle Scholar
  111. 111.
    Krämer E, Schedlbauer T, Hoffmann B, Terborg L, Nowak S, Gores HJ, Passerini S, Winter M (2013) Mechanism of anodic dissolution of the aluminum current collector in 1 M LiTFSI EC: DEC 3: 7 in rechargeable lithium batteries. J Electrochem Soc 160(2):A356–A360CrossRefGoogle Scholar
  112. 112.
    Krämer E, Passerini S, Winter M (2012) Dependency of aluminum collector corrosion in lithium ion batteries on the electrolyte solvent. ECS Electrochem Lett 1(5):C9–C11CrossRefGoogle Scholar
  113. 113.
    Heckmann A, Krott M, Streipert B, Uhlenbruck S, Winter M, Placke T (2017) Suppression of aluminum current collector dissolution by protective ceramic coatings for better high-voltage battery performance. ChemPhysChem 18(1):156–163CrossRefGoogle Scholar
  114. 114.
    Böttcher T, Duda B, Kalinovich N, Kazakova O, Ponomarenko M, Vlasov K, Winter M, Röschenthaler G-V (2014) Syntheses of novel delocalized cations and fluorinated anions, new fluorinated solvents and additives for lithium ion batteries. Prog Solid State Chem 42(4):202–217CrossRefGoogle Scholar
  115. 115.
    Schmitz RW, Murmann P, Schmitz R, Müller R, Krämer L, Kasnatscheew J, Isken P, Niehoff P, Nowak S, Röschenthaler G-V (2014) Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: systematic electrochemical characterization and detailed analysis by spectroscopic methods. Prog Solid State Chem 42(4):65–84CrossRefGoogle Scholar
  116. 116.
    Amereller M, Schedlbauer T, Moosbauer D, Schreiner C, Stock C, Wudy F, Zugmann S, Hammer H, Maurer A, Gschwind R (2014) Electrolytes for lithium and lithium ion batteries: from synthesis of novel lithium borates and ionic liquids to development of novel measurement methods. Prog Solid State Chem 42(4):39–56Google Scholar
  117. 117.
    Nishi Y (2001) The development of lithium ion secondary batteries. Chem Rec 1(5):406–413CrossRefGoogle Scholar
  118. 118.
    Broussely M, Archdale G (2004) Li-ion batteries and portable power source prospects for the next 5–10 years. J Power Sources 136(2):386–394CrossRefGoogle Scholar
  119. 119.
    Pillot C (2017) The rechargeable battery market and main trends 2016–2025. Talk at Advanced Automotive Battery Conference (AABC) Europe, MainzGoogle Scholar
  120. 120.
    Whittingham MS (2014) Ultimate limits to intercalation reactions for lithium batteries. Chem Rev 114(23):11414–11443CrossRefGoogle Scholar
  121. 121.
    Shao YY, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang JG, Wang Y, Liu J (2013) Making Li-air batteries rechargeable: material challenges. Adv Funct Mater 23(8):987–1004CrossRefGoogle Scholar
  122. 122.
    Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162CrossRefGoogle Scholar
  123. 123.
    Chen L, Shaw LL (2014) Recent advances in lithium-sulfur batteries. J Power Sources 267:770–783CrossRefGoogle Scholar
  124. 124.
    Grande L, Paillard E, Hassoun J, Park J-B, Lee Y-J, Sun Y-K, Passerini S, Scrosati B (2014) The lithium/air battery: still an emerging system or a practical reality? Adv Mater 27(5):784-800Google Scholar
  125. 125.
    Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG (2006) Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc 128(4):1390–1393CrossRefGoogle Scholar
  126. 126.
    Hagen M, Hanselmann D, Ahlbrecht K, Maça R, Gerber D, Tübke J (2015) Lithium–sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv Energy Mater 5(16):1401986CrossRefGoogle Scholar
  127. 127.
    Blurton KF, Sammells AF (1979) Metal/air batteries: their status and potential—a review. J Power Sources 4(4):263–279CrossRefGoogle Scholar
  128. 128.
    Abraham KM, Jiang Z (1996) Solid polymer electrolyte-based oxygen batteries. US Patent 5:510,209Google Scholar
  129. 129.
    Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1–5CrossRefGoogle Scholar
  130. 130.
    Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 1:16013CrossRefGoogle Scholar
  131. 131.
    Danuta H, Juliusz U (1962) Electric dry cells and storage batteries. US Patent 3:043,896Google Scholar
  132. 132.
    Rao MLB (1966) Organic electrolyte cells. US Patent 3413154 AGoogle Scholar
  133. 133.
    Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB (1979) A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc 126(4):523–527CrossRefGoogle Scholar
  134. 134.
    Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506CrossRefGoogle Scholar
  135. 135.
    Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc 156(8):A694–A702CrossRefGoogle Scholar
  136. 136.
    Yin Y-X, Xin S, Guo Y-G, Wan L-J (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52(50):13186–13200CrossRefGoogle Scholar
  137. 137.
    SionPower http://www.sionpower.com (Accessed January 20, 2017)
  138. 138.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682CrossRefGoogle Scholar
  139. 139.
    Klein F, Jache B, Bhide A, Adelhelm P (2013) Conversion reactions for sodium-ion batteries. Phys Chem Chem Phys 15(38):15876–15887CrossRefGoogle Scholar
  140. 140.
    Ellis BL, Nazar LF (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mat Sci 16(4):168–177CrossRefGoogle Scholar
  141. 141.
    Bachman JC, Muy S, Grimaud A, Chang H-H, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2016) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162CrossRefGoogle Scholar
  142. 142.
    Hu Y-S (2016) Batteries: getting solid. Nature Energy 1:16042CrossRefGoogle Scholar
  143. 143.
    Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu QH (2011) Redox flow batteries: a review. J Appl Electrochem 41(10):1137–1164CrossRefGoogle Scholar
  144. 144.
    Aurbach D, Weissman I, Gofer Y, Levi E (2003) Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem Rec 3(1):61–73CrossRefGoogle Scholar
  145. 145.
    Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN (2014) Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci 66(0):1–86Google Scholar
  146. 146.
    Jian Z, Luo W, Ji X (2015) Carbon electrodes for K-ion batteries. J Am Chem Soc 137:11566–11569Google Scholar
  147. 147.
    Vaalma C, Giffin GA, Buchholz D, Passerini S (2016) Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J Electrochem Soc 163(7):A1295–A1299CrossRefGoogle Scholar
  148. 148.
    Ponrouch A, Frontera C, Barde F, Palacin MR (2016) Towards a calcium-based rechargeable battery. Nat Mater 15(2):169CrossRefGoogle Scholar
  149. 149.
    Reinsberg P, Bondue CJ, Baltruschat H (2016) Calcium-oxygen batteries as a promising alternative to sodium-oxygen batteries. J Phys Chem C 120(39):22179–22185CrossRefGoogle Scholar
  150. 150.
    Wachtler M, Wagner MR, Schmied M, Winter M, Besenhard JO (2001) The effect of the binder morphology on the cycling stability of Li–alloy composite electrodes. J Electroanal Chem 510(1):12–19CrossRefGoogle Scholar
  151. 151.
    Lux S, Schappacher F, Balducci A, Passerini S, Winter M (2010) Low cost, environmentally benign binders for lithium-ion batteries. J Electrochem Soc 157(3):A320–A325CrossRefGoogle Scholar
  152. 152.
    Qi X, Blizanac B, DuPasquier A, Oljaca M, Li J, Winter M (2013) Understanding the influence of conductive carbon additives surface area on the rate performance of LiFePO4 cathodes for lithium ion batteries. Carbon 64:334–340CrossRefGoogle Scholar
  153. 153.
    Qi X, Blizanac B, DuPasquier A, Meister P, Placke T, Oljaca M, Li J, Winter M (2014) Investigation of PF6 and TFSI anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries. Phys Chem Chem Phys 16(46):25306–25313CrossRefGoogle Scholar
  154. 154.
    Qi X, Blizanac B, DuPasquier A, Lal A, Niehoff P, Placke T, Oljaca M, Li J, Winter M (2015) Influence of thermal treated carbon black conductive additive on the performance of high voltage spinel Cr-doped LiNi0.5Mn1.5O4 composite cathode electrode. J Electrochem Soc 162(3):A339–A343CrossRefGoogle Scholar
  155. 155.
    Bockholt H, Haselrieder W, Kwade A (2013) Intensive dry and wet mixing influencing the structural and electrochemical properties of secondary lithium-ion battery cathodes. ECS Trans 50(26):25–35CrossRefGoogle Scholar
  156. 156.
    Bockholt H, Haselrieder W, Kwade A (2016) Intensive powder mixing for dry dispersing of carbon black and its relevance for lithium-ion battery cathodes. Powder Technol 297:266–274CrossRefGoogle Scholar
  157. 157.
    Bauer W, Nötzel D, Wenzel V, Nirschl H (2015) Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries. J Power Sources 288:359–367CrossRefGoogle Scholar
  158. 158.
    Mazouzi D, Karkar Z, Hernandez CR, Manero PJ, Guyomard D, Roue L, Lestriez B (2015) Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. J Power Sources 280:533–549CrossRefGoogle Scholar
  159. 159.
    Porcher W, Lestriez B, Jouanneau S, Guyomard D (2010) Optimizing the surfactant for the aqueous processing of LiFePO4 composite electrodes. J Power Sources 195(9):2835–2843CrossRefGoogle Scholar
  160. 160.
    Du Z, Wood III DL, Daniel C, Kalnaus S, Li J (2017) Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries. J Appl Electrochem 47(3):405–415Google Scholar
  161. 161.
    Bitsch B, Gallasch T, Schroeder M, Börner M, Winter M, Willenbacher N (2016) Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes. J Power Sources 328:114–123CrossRefGoogle Scholar
  162. 162.
    Novák P, Scheifele W, Winter M, Haas O (1997) Graphite electrodes with tailored porosity for rechargeable ion-transfer batteries. J Power Sources 68(2):267–270CrossRefGoogle Scholar
  163. 163.
    Haselrieder W, Ivanov S, Christen DK, Bockholt H, Kwade A (2013) Impact of the calendering process on the interfacial structure and the related electrochemical performance of secondary lithium-ion batteries. ECS Trans 50(26):59–70CrossRefGoogle Scholar
  164. 164.
    Antartis D, Dillon S, Chasiotis I (2015) Effect of porosity on electrochemical and mechanical properties of composite Li-ion anodes. J Compos Mater 49(15):1849–1862Google Scholar
  165. 165.
    Zhang W-J (2011) Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J Power Sources 196(3):877–885CrossRefGoogle Scholar
  166. 166.
    Zhao H, Yuan W, Liu G (2015) Hierarchical electrode design of high-capacity alloy nanomaterials for lithium-ion batteries. Nano Today 10(2):193–212CrossRefGoogle Scholar
  167. 167.
    Hochgatterer N, Schweiger M, Koller S, Raimann P, Wöhrle T, Wurm C, Winter M (2008) Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem Solid-State Lett 11(5):A76–A80CrossRefGoogle Scholar
  168. 168.
    Vogl U, Das P, Weber A, Winter M, Kostecki R, Lux S (2014) Mechanism of interactions between CMC binder and Si single crystal facets. Langmuir 30(34):10299–10307CrossRefGoogle Scholar
  169. 169.
    Nelson P, Gallagher K, Bloom I BatPaC (battery performance and cost) software, Argonne National Lab, http://www.cse.anl.gov/BatPaC/ (Accessed on January 10, 2017)
  170. 170.
    Warner J (2015) The handbook of lithium-ion battery pack design—chemistry, components, types and terminology. Elsevier Science, BurlingtonGoogle Scholar
  171. 171.
  172. 172.
    Korthauer R (2013) Handbuch Lithium-Ionen-Batterien. Springer Vieweg, WiesbadenGoogle Scholar
  173. 173.
    Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039CrossRefGoogle Scholar
  174. 174.
    Obrovac MN, Chevrier VL (2014) Alloy negative electrodes for Li-ion batteries. Chem Rev 114(23):11444–11502CrossRefGoogle Scholar
  175. 175.
    Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196(1):13–24CrossRefGoogle Scholar
  176. 176.
    Qiu B, Zhang M, Xia Y, Liu Z, Meng YS (2017) Understanding and controlling anionic electrochemical activity in high-capacity oxides for next generation Li-ion batteries. Chem Mater 29(3):908–915CrossRefGoogle Scholar
  177. 177.
    Noh H-J, Youn S, Yoon CS, Sun Y-K (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130CrossRefGoogle Scholar
  178. 178.
    Li J, Kloepsch R, Stan MC, Nowak S, Kunze M, Winter M, Passerini S (2011) Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability. J Power Sources 196(10):4821–4825CrossRefGoogle Scholar
  179. 179.
    Xia Q, Zhao X, Xu M, Ding Z, Liu J, Chen L, Ivey DG, Wei W (2015) A Li-rich Layered@ Spinel@ Carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method. J Mater Chem A 3(7):3995–4003CrossRefGoogle Scholar
  180. 180.
    Liu H, Wang J, Zhang X, Zhou D, Qi X, Qiu B, Fang J, Kloepsch R, Schumacher G, Liu Z, Li J (2016) Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: the critical effects of surface orientations and particle size. ACS Appl Mater Interfaces 8(7):4661–4675Google Scholar
  181. 181.
    Liu N, Lu Z, Zhao J, McDowell MT, Lee H-W, Zhao W, Cui Y (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nano 9(3):187–192CrossRefGoogle Scholar
  182. 182.
    Winter M, Besenhard JO, Albering JH, Yang J, Wachtler M (1998) Lithium storage alloys as anode materials for lithium ion batteries. Prog Batt Batt Mater 17:208Google Scholar
  183. 183.
    Besenhard J, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sources 68(1):87–90CrossRefGoogle Scholar
  184. 184.
    Qian J, Adams BD, Zheng J, Xu W, Henderson WA, Wang J, Bowden ME, Xu S, Hu J, Zhang J-G (2016) Anode-free rechargeable lithium metal batteries. Adv Funct Mater 26(39):7094–7102CrossRefGoogle Scholar
  185. 185.
    Brückner J, Thieme S, Grossmann HT, Dörfler S, Althues H, Kaskel S (2014) Lithium–sulfur batteries: influence of C-rate, amount of electrolyte and sulfur loading on cycle performance. J Power Sources 268:82–87CrossRefGoogle Scholar
  186. 186.
    Greszler T, Gu W, Goebel S, Masten D, Lakshmanan B (2012) Li-air and Li-sulfur in an automotive system context. Talk at Beyond Lithium Ion 5, Berkeley, CAGoogle Scholar
  187. 187.
    Armand M (1994) The history of polymer electrolytes. Solid State Ionics 69(3):309–319CrossRefGoogle Scholar
  188. 188.
    Greatbatch W, Holmes CF (1992) The lithium/iodine battery: a historical perspective. Pacing Clin Electrophysiol 15(11):2034–2036CrossRefGoogle Scholar
  189. 189.
    Vetter J, Novak P, Wagner MR, Veit C, Möller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147(1–2):269–281CrossRefGoogle Scholar
  190. 190.
    Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M (2014) A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 7(2):627–631CrossRefGoogle Scholar
  191. 191.
    Manthiram A, Yu X, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:16103CrossRefGoogle Scholar
  192. 192.
    Pieczonka NPW, Liu Z, Lu P, Olson KL, Moote J, Powell BR, Kim J-H (2013) Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J Phys Chem C 117(31):15947–15957CrossRefGoogle Scholar
  193. 193.
    Gallus DR, Schmitz R, Wagner R, Hoffmann B, Nowak S, Cekic-Laskovic I, Schmitz RW, Winter M (2014) The influence of different conducting salts on the metal dissolution and capacity fading of NCM cathode material. Electrochim Acta 134:393–398CrossRefGoogle Scholar
  194. 194.
    Börner M, Klamor S, Hoffmann B, Schroeder M, Nowak S, Würsig A, Winter M, Schappacher F (2016) Investigations on the C-rate and temperature dependence of manganese dissolution/deposition in LiMn2O4/Li4Ti5O12 lithium ion batteries. J Electrochem Soc 163(6):A831–A837CrossRefGoogle Scholar
  195. 195.
    Evertz M, Horsthemke F, Kasnatscheew J, Börner M, Winter M, Nowak S (2016) Unraveling transition metal dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in lithium ion full cells by using the total reflection X-ray fluorescence technique. J Power Sources 329:364–371CrossRefGoogle Scholar
  196. 196.
    Jia H, Kloepsch R, He X, Evertz M, Nowak S, Li J, Winter M, Placke T (2016) Nanostructured ZnFe2O4 as anode material for lithium ion batteries: ionic liquid-assisted synthesis and performance evaluation with special emphasis on comparative metal dissolution. Acta Chim Slov 63(3):470–483CrossRefGoogle Scholar
  197. 197.
    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537CrossRefGoogle Scholar
  198. 198.
    Kato Y, Kawamoto K, Kanno R, Hirayama M (2012) Discharge performance of all-solid-state battery using a lithium superionic conductor Li10GeP2S12. Electrochemistry 80(10):749–751CrossRefGoogle Scholar
  199. 199.
    Gambe Y, Sun Y, Honma I (2015) Development of bipolar all-solid-state lithium battery based on quasi-solid-state electrolyte containing tetraglyme-LiTFSA equimolar complex. Sci Rep 5:8869–8872Google Scholar
  200. 200.
    Kloepsch R, Placke T, Winter M (2017) Festelektrolytbatterien: Sinn, Unsinn, Realitätssinn. Proceedings, Batterieforum Deutschland, January 25–27, Berlin, GermanyGoogle Scholar
  201. 201.
    Armand M (1983) Polymer solid electrolytes—an overview. Solid State Ionics 9:745–754CrossRefGoogle Scholar
  202. 202.
    Armand MB (1986) Polymer electrolytes. Annu Rev Mater Sci 16(1):245–261CrossRefGoogle Scholar
  203. 203.
    Baril D, Michot C, Armand M (1997) Electrochemistry of liquids vs. solids: polymer electrolytes. Solid State Ionics 94(1):35–47CrossRefGoogle Scholar
  204. 204.
    Murata K, Izuchi S, Yoshihisa Y (2000) An overview of the research and development of solid polymer electrolyte batteries. Electrochim Acta 45(8–9):1501–1508CrossRefGoogle Scholar
  205. 205.
    Rupp B, Schmuck M, Balducci A, Winter M, Kern W (2008) Polymer electrolyte for lithium batteries based on photochemically crosslinked poly (ethylene oxide) and ionic liquid. Eur Polym J 44(9):2986–2990CrossRefGoogle Scholar
  206. 206.
    Isken P, Winter M, Passerini S, Lex-Balducci A (2013) Methacrylate based gel polymer electrolyte for lithium-ion batteries. J Power Sources 225:157–162CrossRefGoogle Scholar
  207. 207.
    Schroeder M, Isken P, Winter M, Passerini S, Lex-Balducci A, Balducci A (2013) An investigation on the use of a methacrylate-based gel polymer electrolyte in high power devices. J Electrochem Soc 160(10):A1753–A1758CrossRefGoogle Scholar
  208. 208.
    Jankowsky S, Hiller MM, Fromm O, Winter M, Wiemhoefer H-D (2015) Enhanced lithium-ion transport in polyphosphazene based gel polymer electrolytes. Electrochim Acta 155:364–371CrossRefGoogle Scholar
  209. 209.
    Bruce PG, West AR (1983) The A-C conductivity of polycrystalline LISICON, Li2+2x Zn1-x GeO4, and a model for intergranular constriction resistances. J Electrochem Soc 130(3):662–669CrossRefGoogle Scholar
  210. 210.
    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1990) Ionic-conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137(4):1023–1027CrossRefGoogle Scholar
  211. 211.
    Inaguma Y, Chen LQ, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) High ionic-conductivity in lithium lanthanum titanate. Solid State Commun 86(10):689–693CrossRefGoogle Scholar
  212. 212.
    Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem, Int Ed 46(41):7778–7781CrossRefGoogle Scholar
  213. 213.
    Yu XH, Bates JB, Jellison GE, Hart FX (1997) A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J Electrochem Soc 144(2):524–532CrossRefGoogle Scholar
  214. 214.
    Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo YF, Ceder G (2015) Design principles for solid-state lithium superionic conductors. Nat Mater 14(10):1026CrossRefGoogle Scholar
  215. 215.
    Sakuda A, Hayashi A, Tatsumisago M (2013) Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci Rep 3:2261Google Scholar
  216. 216.
    Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 182(1):116–119CrossRefGoogle Scholar
  217. 217.
    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10(9):682–686CrossRefGoogle Scholar
  218. 218.
    Wenzel S, Randau S, Leichtweiss T, Weber DA, Sann J, Zeier WG, Janek J (2016) Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem Mater 28(7):2400–2407CrossRefGoogle Scholar
  219. 219.
    Wenzel S, Weber DA, Leichtweiss T, Busche MR, Sann J, Janek J (2016) Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ionics 286:24–33CrossRefGoogle Scholar
  220. 220.
    Zhu YZ, He XF, Mo YF (2016) First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A 4(9):3253–3266CrossRefGoogle Scholar
  221. 221.
    Metalary http://metalary.com/lithium-price/. Accessed 8 March 2017
  222. 222.
    Cekic-Laskovic I, Wagner R, Wiemers-Meyer S, Nowak S, Winter M (2016) Liquid electrolytes—just a commodity and a phase-out model? Proceedings, Graz Battery Days, September 26–28, Graz, AustriaGoogle Scholar
  223. 223.
    Bieker G, Winter M, Bieker P (2015) Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys Chem Chem Phys 17(14):8670–8679CrossRefGoogle Scholar
  224. 224.
    Ryou MH, Lee YM, Lee Y, Winter M, Bieker P (2015) Surface treatment: mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv Funct Mater 25(6):825–825CrossRefGoogle Scholar
  225. 225.
    Martha SK, Nanda J, Kim Y, Unocic RR, Pannala S, Dudney NJ (2013) Solid electrolyte coated high voltage layered-layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2. J Mater Chem A 1(18):5587–5595CrossRefGoogle Scholar
  226. 226.
    Li XF, Liu J, Banis MN, Lushington A, Li RY, Cai M, Sun XL (2014) Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ Sci 7(2):768–778CrossRefGoogle Scholar
  227. 227.
    Woodford WH, Carter WC, Chiang Y-M (2012) Design criteria for electrochemical shock resistant battery electrodes. Energy Environ Sci 5(7):8014–8024CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.MEET Battery Research Center, Institute of Physical ChemistryUniversity of MünsterMünsterGermany
  2. 2.Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbHMünsterGermany

Personalised recommendations