Skip to main content

Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density

Abstract

Since their market introduction in 1991, lithium ion batteries (LIBs) have developed evolutionary in terms of their specific energies (Wh/kg) and energy densities (Wh/L). Currently, they do not only dominate the small format battery market for portable electronic devices, but have also been successfully implemented as the technology of choice for electromobility as well as for stationary energy storage. Besides LIBs, a variety of different technologically promising battery concepts exists that, depending on the respective technology, might also be suitable for various application purposes. These systems of the “next generation,” the so-called post-lithium ion batteries (PLIBs), such as metal/sulfur, metal/air or metal/oxygen, or “post-lithium technologies” (systems without Li), which are based on alternative single (Na+, K+) or multivalent ions (Mg2+, Ca2+), are currently being studied intensively. From today’s point of view, it seems quite clear that there will not only be a single technology for all applications (technology monopoly), but different battery systems, which can be especially suitable or combined for a particular application (technology diversity). In this review, we place the lithium ion technology in a historical context and give insights into the battery technology diversity that evolved during the past decades and which will, in turn, influence future research and development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    IEA (2017) https://www.iea.org/ (Accessed January 12, 2017)

  2. 2.

    Nagaura T (1991) Prog Batteries Solar Cells 10:218

    CAS  Google Scholar 

  3. 3.

    Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100(1–2):101–106

    CAS  Article  Google Scholar 

  4. 4.

    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    CAS  Article  Google Scholar 

  5. 5.

    Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4269

    CAS  Article  Google Scholar 

  6. 6.

    Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    CAS  Article  Google Scholar 

  7. 7.

    Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430

    CAS  Article  Google Scholar 

  8. 8.

    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262

    CAS  Article  Google Scholar 

  9. 9.

    Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295

    CAS  Article  Google Scholar 

  10. 10.

    Wagner R, Preschitschek N, Passerini S, Leker J, Winter M (2013) Current research trends and prospects among the various materials and designs used in lithium-based batteries. J Appl Electrochem 43(5):481–496

    CAS  Article  Google Scholar 

  11. 11.

    Crabtree G, Kócs E, Trahey L (2015) The energy-storage frontier: lithium-ion batteries and beyond. MRS Bull 40(12):1067–1078

    CAS  Article  Google Scholar 

  12. 12.

    Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29

    CAS  Article  Google Scholar 

  13. 13.

    Schipper F, Aurbach D (2016) A brief review: past, present and future of lithium ion batteries. Russ J Electrochem 52(12):1095–1121

    CAS  Article  Google Scholar 

  14. 14.

    Deng D (2015) Li-ion batteries: basics, progress, and challenges. Energy Sci Eng 3(5):385–418

    Article  Google Scholar 

  15. 15.

    Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164(1):A5019–A5025

    CAS  Article  Google Scholar 

  16. 16.

    Tarascon JM (2016) The Li-ion battery: 25 years of exciting and enriching experiences. Electrochem Soc Interface 25(3):79–83

    CAS  Article  Google Scholar 

  17. 17.

    Besenhard JO, Winter M (1998) Insertion reactions in advanced electrochemical energy storage. Pure Appl Chem 70(3):603–608

    CAS  Article  Google Scholar 

  18. 18.

    Andre D, Kim S-J, Lamp P, Lux SF, Maglia F, Paschos O, Stiaszny B (2015) Future generations of cathode materials: an automotive industry perspective. J Mater Chem A 3:6709–6732

    CAS  Article  Google Scholar 

  19. 19.

    Patry G, Romagny A, Martinet S, Froelich D (2014) Cost modeling of lithium-ion battery cells for automotive applications. Energy Sci Eng 3(1):71–82

    Article  Google Scholar 

  20. 20.

    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29

    CAS  Article  Google Scholar 

  21. 21.

    Capsoni D, Bini M, Ferrari S, Quartarone E, Mustarelli P (2012) Recent advances in the development of Li-air batteries. J Power Sources 220:253–263

    CAS  Article  Google Scholar 

  22. 22.

    Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2012) A critical review of Li/air batteries. J Electrochem Soc 159(2):R1–R30

    CAS  Article  Google Scholar 

  23. 23.

    Bresser D, Passerini S, Scrosati B (2013) Recent progress and remaining challenges in sulfur-based lithium secondary batteries—a review. Chem Commun 49(90):10545–10562

    CAS  Article  Google Scholar 

  24. 24.

    Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114(23):11751–11787

    CAS  Article  Google Scholar 

  25. 25.

    Canepa P, Sai Gautam G, Hannah DC, Malik R, Liu M, Gallagher KG, Persson KA, Ceder G (2017) Odyssey of multivalent cathode materials: open questions and future challenges. Chem Rev 117(5):4287–4341

  26. 26.

    Besenhard JO, Winter M (2002) Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. ChemPhysChem 3(2):155–159

    CAS  Article  Google Scholar 

  27. 27.

    Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322

  28. 28.

    Janek J, Zeier WG (2016) A solid future for battery development. Nature Energy 1:16141

    Article  Google Scholar 

  29. 29.

    Nelson P, Gallagher K, Bloom I, Dees D (2011) Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles. Chemical Sciences and Engineering Division. Argonne National Laboratory, Argonne, IL US

    Google Scholar 

  30. 30.

    Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5(7):7854–7863

    CAS  Article  Google Scholar 

  31. 31.

    Gallagher KG, Goebel S, Greszler T, Mathias M, Oelerich W, Eroglu D, Srinivasan V (2014) Quantifying the promise of lithium-air batteries for electric vehicles. Energy Environ Sci 7(5):1555–1563

    CAS  Article  Google Scholar 

  32. 32.

    Van Noorden R (2014) A better battery. Nature 507(7490):26–28

    CAS  Article  Google Scholar 

  33. 33.

    Berg EJ, Villevieille C, Streich D, Trabesinger S, Novák P (2015) Rechargeable batteries: grasping for the limits of chemistry. J Electrochem Soc 162(14):A2468–A2475

    CAS  Article  Google Scholar 

  34. 34.

    Gröger O, Gasteiger HA, Suchsland J-P (2015) Review—electromobility: batteries or fuel cells? J Electrochem Soc 162(14):A2605–A2622

    Article  CAS  Google Scholar 

  35. 35.

    Wood Iii DL, Li J, Daniel C (2015) Prospects for reducing the processing cost of lithium ion batteries. J Power Sources 275:234–242

    Article  CAS  Google Scholar 

  36. 36.

    Scrosati B (2011) History of lithium batteries. J Solid State Electrochem 15(7–8):1623–1630

    CAS  Article  Google Scholar 

  37. 37.

    Placke T, Winter M (2015) Batterien für medizinische Anwendungen. Z Herz- Thorax- Gefäßchir 29(2):139–149

    Article  Google Scholar 

  38. 38.

    Bieker P, Winter M (2015) Was braucht man für eine Super-Batterie? Chem Unserer Zeit 50(1):26–33

    Article  CAS  Google Scholar 

  39. 39.

    Winter M, Besenhard JO (1999) Wiederaufladbare Batterien. Teil 1: Akkumulatoren mit wäßriger Elektrolytlösung. Chem Unserer Zeit 33(5):252–266

    CAS  Article  Google Scholar 

  40. 40.

    Owens BB (1986) Batteries for implantable biomedical devices. Plenum Press, New York

    Book  Google Scholar 

  41. 41.

    Rüdorff W, Hofmann U (1938) Über Graphitsalze. Z Anorg Allg Chem 238(1):1

    Article  Google Scholar 

  42. 42.

    McCullough FP, Beale AF (1989) Electrode for use in secondary electrical energy storage devices—avoids any substantial change in dimension during repeated electrical charge and discharge cycles. US Pat 4:865,931

    Google Scholar 

  43. 43.

    McCullough FP, Levine A, Snelgrove RV (1989) Secondary battery. US Pat 4:830,938

    Google Scholar 

  44. 44.

    McCullough FP (1996) Flexible carbon fiber, carbon fiber electrode and secondary energy storage devices. US Pat 5:518,836

    Google Scholar 

  45. 45.

    McCullough FP (1996) Flexible carbon fiber electrode with low modulus and high electrical conductivity, battery employing the carbon fiber electrode, and method of manufacture. US Pat 5:532,083

    Google Scholar 

  46. 46.

    Carlin RT, Delong HC, Fuller J, Trulove PC (1994) Dual intercalating molten electrolyte batteries. J Electrochem Soc 141(7):L73–L76

    CAS  Article  Google Scholar 

  47. 47.

    Carlin RT, Fuller J, Kuhn WK, Lysaght MJ, Trulove PC (1996) Electrochemistry of room-temperature chloroaluminate molten salts at graphitic and nongraphitic electrodes. J Appl Electrochem 26(11):1147–1160

    CAS  Article  Google Scholar 

  48. 48.

    Dahn JR, Seel JA (2000) Energy and capacity projections for practical dual-graphite cells. J Electrochem Soc 147(3):899–901

    CAS  Article  Google Scholar 

  49. 49.

    Seel JA, Dahn JR (2000) Electrochemical intercalation of PF6 into graphite. J Electrochem Soc 147(3):892–898

    CAS  Article  Google Scholar 

  50. 50.

    Placke T, Bieker P, Lux SF, Fromm O, Meyer HW, Passerini S, Winter M (2012) Dual-ion cells based on anion intercalation into graphite from ionic liquid-based electrolytes. Z Phys Chem 226:391–407

    CAS  Article  Google Scholar 

  51. 51.

    Placke T, Fromm O, Lux SF, Bieker P, Rothermel S, Meyer HW, Passerini S, Winter M (2012) Reversible intercalation of bis (trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J Electrochem Soc 159(11):A1755–A1765

    CAS  Article  Google Scholar 

  52. 52.

    Rothermel S, Meister P, Schmuelling G, Fromm O, Meyer HW, Nowak S, Winter M, Placke T (2014) Dual-graphite cells based on the reversible intercalation of bis (trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte. Energy Environ Sci 7(10):3412–3423

    CAS  Article  Google Scholar 

  53. 53.

    Read JA, Cresce AV, Ervin MH, Xu K (2014) Dual-graphite chemistry enabled by a high voltage electrolyte. Energy Environ Sci 7(2):617–620

    CAS  Article  Google Scholar 

  54. 54.

    Zhang X, Tang Y, Zhang F, Lee C-S (2016) A novel aluminum–graphite dual-ion battery. Adv Energy Mater 6(11):1502588–1502593

    Article  CAS  Google Scholar 

  55. 55.

    Tong X, Zhang F, Ji B, Sheng M, Tang Y (2016) Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv Mater 28(45):9979–9985

    CAS  Article  Google Scholar 

  56. 56.

    Miyoshi S, Nagano H, Fukuda T, Kurihara T, Watanabe M, Ida S, Ishihara T (2016) Dual-carbon battery using high concentration LiPF6 in dimethyl carbonate (DMC) electrolyte. J Electrochem Soc 163(7):A1206–A1213

    CAS  Article  Google Scholar 

  57. 57.

    Meister P, Siozios V, Reiter J, Klamor S, Rothermel S, Fromm O, Meyer HW, Winter M, Placke T (2014) Dual-ion cells based on the electrochemical intercalation of asymmetric fluorosulfonyl-(trifluoromethanesulfonyl) imide anions into graphite. Electrochim Acta 130 (0):625–633

  58. 58.

    Onagi N, Hibino E, Okada S, Ishihara T (2014) Nonaqueous electrolyte secondary battery. US20140186696 A1

  59. 59.

    Winter M, Besenhard JO (1999) Wiederaufladbare Batterien. Teil 2: Akkumulatoren mit nichtwäßriger Elektrolytlösung. Chem Unserer Zeit 33(6):320–332

    CAS  Article  Google Scholar 

  60. 60.

    Peled E (1979) The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems - the solid electrolyte interphase model. J Electrochem Soc 126(12):2047–2051

    CAS  Article  Google Scholar 

  61. 61.

    Besenhard JO, Winter M, Yang J, Biberacher W (1995) Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. J Power Sources 54(2):228–231

    CAS  Article  Google Scholar 

  62. 62.

    Peled E, Golodnitsky D, Ardel G (1997) Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc 144(8):L208–L210

    CAS  Article  Google Scholar 

  63. 63.

    Winter M, Appel WK, Evers B, Hodal T, Moller KC, Schneider I, Wachtler M, Wagner MR, Wrodnigg GH, Besenhard JO (2001) Studies on the anode/electrolyte interface in lithium ion batteries. Chem Mon 132(4):473–486

    CAS  Article  Google Scholar 

  64. 64.

    Edström K, Herstedt M, Abraham DP (2006) A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries. J Power Sources 153(2):380–384

    Article  CAS  Google Scholar 

  65. 65.

    Winter M (2009) The solid electrolyte interphase—the most important and the least understood solid electrolyte in rechargeable Li batteries. Z Phys Chem 223(10–11):1395–1406

    CAS  Article  Google Scholar 

  66. 66.

    Verma P, Maire P, Novak P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55(22):6332–6341

    CAS  Article  Google Scholar 

  67. 67.

    An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood III DL (2016) The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105:52–76

    CAS  Article  Google Scholar 

  68. 68.

    Schranzhofer H, Bugajski J, Santner H, Korepp C, Möller K-C, Besenhard J, Winter M, Sitte W (2006) Electrochemical impedance spectroscopy study of the SEI formation on graphite and metal electrodes. J Power Sources 153(2):391–395

    CAS  Article  Google Scholar 

  69. 69.

    Root MJ (2013) Medical Device Batteries. In: Brodd RJ (Ed.) Batteries for sustainability—selected entries from the Encyclopedia of Sustainability Science and Technology. Springer, New York

  70. 70.

    Eichinger G, Semrau G (1990) Lithiumbatterien I. Chemische Grundlagen. Chem Unserer Zeit 24(1):32–36

    CAS  Article  Google Scholar 

  71. 71.

    Eichinger G, Semrau G (1990) Lithiumbatterien II. Entladereaktionen und komplette Zellen. Chem Unserer Zeit 24(2):90–96

    CAS  Article  Google Scholar 

  72. 72.

    Brandt K (1994) Historical development of secondary lithium batteries. Solid State Ionics 69(3–4):173–183

    CAS  Article  Google Scholar 

  73. 73.

    Watanabe K, Fukuda M (1970) Primary cell for electric batteries. US Patent No 3:536,532

    Google Scholar 

  74. 74.

    Schneider AA, Moser JR (1972) Primary cells and iodine-containing cathodes therefore. US Patent 3:674,562

    Google Scholar 

  75. 75.

    Julien C, Mauger A, Vijh A, Zaghib K (2016) Lithium batteries. Science and Technology, Springer International Publishing, Switzerland

  76. 76.

    Reddy TB (2010) Linden’s Handbook of Batteries, 4th Edition. McGraw-Hill Education, New York

  77. 77.

    Whittingham MS (1976) Electrical energy-storage and intercalation cehmistry. Science 192(4244):1126–1127

    CAS  Article  Google Scholar 

  78. 78.

    Whittingham MS (1978) Chemistry of intercalation compounds—metal guests in chalcogenide hosts. Prog Solid State Chem 12(1):41–99

    CAS  Article  Google Scholar 

  79. 79.

    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4301

    CAS  Article  Google Scholar 

  80. 80.

    Pereira N, Amatucci GG, Whittingham MS, Hamlen R (2015) Lithium-titanium disulfide rechargeable cell performance after 35 years of storage. J Power Sources 280:18–22

    CAS  Article  Google Scholar 

  81. 81.

    Fouchard D, Taylor JB (1987) The Molicel rechargeable lithium system—multicell aspects. J Power Sources 21(3–4):195–205

    CAS  Article  Google Scholar 

  82. 82.

    Brandt K, Laman FC (1989) Reproducibility and reliability of rechargeable lithium molybdenum-disulfide batteries. J Power Sources 25(4):265–276

    CAS  Article  Google Scholar 

  83. 83.

    Robillard C (2005) Proc IEEE Power Engineering Society General Meeting. San Francisco, CA, June 12–16:1223–1227

    Google Scholar 

  84. 84.

    Dan P, Mengeritsky E, Aurbach D, Weissman I, Zinigrad E (1997) More details on the new LiMnO2 rechargeable battery technology developed at Tadiran. J Power Sources 68(2):443–447

    CAS  Article  Google Scholar 

  85. 85.

    Mengeritsky E, Dan P, Weissman I, Zaban A, Aurbach D (1996) Safety and performance of Tadiran TLR-7103 rechargeable batteries. J Electrochem Soc 143(7):2110–2116

    CAS  Article  Google Scholar 

  86. 86.

    Fouchard D, Lechner L (1993) Analysis of safety and reliability in secondary lithium batteries. Electrochim Acta 38(9):1193–1198

    CAS  Article  Google Scholar 

  87. 87.

    Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10(10):725–763

    CAS  Article  Google Scholar 

  88. 88.

    Heine J, Hilbig P, Qi X, Niehoff P, Winter M, Bieker P (2015) Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries. J Electrochem Soc 162(6):A1094–A1101

    CAS  Article  Google Scholar 

  89. 89.

    Lazzari M, Scrosati B (1980) Cyclable lithium organic electrolyte cell based on 2 intercalation electrodes. J Electrochem Soc 127(3):773–774

    CAS  Article  Google Scholar 

  90. 90.

    Scrosati B (1992) Lithium rocking chair batteries—an old concept. J Electrochem Soc 139(10):2776–2781

    CAS  Article  Google Scholar 

  91. 91.

    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2—a new cathode material for batteries of high-energy density. Mater Res Bull 15(6):783–789

    CAS  Article  Google Scholar 

  92. 92.

    Winter M, Besenhard JO (1999) Lithiated carbons. In: Besenhard JO (ed) Handbook of Battery Materials. Wiley-VCH Verlag GmbH, Weinheim, pp 383–418

  93. 93.

    Winter M, Möller K-C, Besenhard JO (2003) Carbonaceous and graphitic anodes. In: Nazri G-A, Pistoia G (eds) Lithium batteries: Science and Technology. Springer US, Boston, pp 145–194

    Chapter  Google Scholar 

  94. 94.

    Juza R, Wehle V (1965) Lithium-Graphit-Einlagerungsverbindungen. Naturwissenschaften 52(20):560

    CAS  Article  Google Scholar 

  95. 95.

    Bagouin M, Guerard D, Herold A (1966) Action de la vapeur de lithium sur le graphite. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie C 262(7):557

    CAS  Google Scholar 

  96. 96.

    Guerard D, Herold A (1972) New method for preparation of insertion compounds of lithium in graphite. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie C 275(11):571

    CAS  Google Scholar 

  97. 97.

    Guerard D, Herold A (1975) Intercalation of lithium into graphite and other carbons. Carbon 13(4):337–345

    CAS  Article  Google Scholar 

  98. 98.

    Dey AN, Sullivan BP (1970) Electrochemical decomposition of propylene carbonate on graphite. J Electrochem Soc 117(2):222

    CAS  Article  Google Scholar 

  99. 99.

    Arakawa M, Yamaki JI (1987) The cathodic decomposition of propylene carbonate in lithium batteries. J Electroanal Chem 219(1–2):273–280

    CAS  Article  Google Scholar 

  100. 100.

    Fong R, von Sacken U, Dahn JR (1990) Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc 137(7):2009–2013

    CAS  Article  Google Scholar 

  101. 101.

    Besenhard JO (1976) The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes. Carbon 14(2):111–115

    CAS  Article  Google Scholar 

  102. 102.

    Gallus DR, Wagner R, Wiemers-Meyer S, Winter M, Cekic-Laskovic I (2015) New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pKa value. Electrochim Acta 184:410–416

    CAS  Article  Google Scholar 

  103. 103.

    Wagner R, Streipert B, Kraft V, Reyes Jiménez A, Röser S, Kasnatscheew J, Gallus DR, Börner M, Mayer C, Arlinghaus HF (2016) Counterintuitive role of magnesium salts as effective electrolyte additives for high voltage lithium-ion batteries. Adv Mater Interfaces 3(15)

  104. 104.

    Wagner R, Korth M, Streipert B, Kasnatscheew J, Gallus DR, Brox S, Amereller M, Cekic-Laskovic I, Winter M (2016) Impact of selected LiPF6 hydrolysis products on the high voltage stability of lithium-ion battery cells. ACS Appl Mater Interfaces 8(45):30871–30878

    CAS  Article  Google Scholar 

  105. 105.

    Yazami R, Touzain P (1983) A reversible graphite-lithium negative electrode for electrochemical generators. J Power Sources 9(3):365–371

    CAS  Article  Google Scholar 

  106. 106.

    Basu S (1981) Rechargeable battery. Bell Telephone Laboratories, US Patent 4:304,825

    Google Scholar 

  107. 107.

    Murmann P, Streipert B, Kloepsch R, Ignatiev N, Sartori P, Winter M, Cekic-Laskovic I (2015) Lithium-cyclo-difluoromethane-1, 1-bis (sulfonyl) imide as a stabilizing electrolyte additive for improved high voltage applications in lithium-ion batteries. Phys Chem Chem Phys 17(14):9352–9358

    CAS  Article  Google Scholar 

  108. 108.

    Ozawa K (1994) Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes—the LiCoO2/ C system. Solid State Ionics 69(3–4):212–221

    CAS  Article  Google Scholar 

  109. 109.

    Megahed S, Scrosati B (1994) Lithium-ion rechargeable batteries. J Power Sources 51(1–2):79–104

    CAS  Article  Google Scholar 

  110. 110.

    Bieker P, Winter M (2016) Lithium-Ionen-Technologie und was danach kommen könnte. Chem Unserer Zeit 50(3):172–186

    CAS  Article  Google Scholar 

  111. 111.

    Krämer E, Schedlbauer T, Hoffmann B, Terborg L, Nowak S, Gores HJ, Passerini S, Winter M (2013) Mechanism of anodic dissolution of the aluminum current collector in 1 M LiTFSI EC: DEC 3: 7 in rechargeable lithium batteries. J Electrochem Soc 160(2):A356–A360

    Article  CAS  Google Scholar 

  112. 112.

    Krämer E, Passerini S, Winter M (2012) Dependency of aluminum collector corrosion in lithium ion batteries on the electrolyte solvent. ECS Electrochem Lett 1(5):C9–C11

    Article  CAS  Google Scholar 

  113. 113.

    Heckmann A, Krott M, Streipert B, Uhlenbruck S, Winter M, Placke T (2017) Suppression of aluminum current collector dissolution by protective ceramic coatings for better high-voltage battery performance. ChemPhysChem 18(1):156–163

    CAS  Article  Google Scholar 

  114. 114.

    Böttcher T, Duda B, Kalinovich N, Kazakova O, Ponomarenko M, Vlasov K, Winter M, Röschenthaler G-V (2014) Syntheses of novel delocalized cations and fluorinated anions, new fluorinated solvents and additives for lithium ion batteries. Prog Solid State Chem 42(4):202–217

    Article  CAS  Google Scholar 

  115. 115.

    Schmitz RW, Murmann P, Schmitz R, Müller R, Krämer L, Kasnatscheew J, Isken P, Niehoff P, Nowak S, Röschenthaler G-V (2014) Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: systematic electrochemical characterization and detailed analysis by spectroscopic methods. Prog Solid State Chem 42(4):65–84

    CAS  Article  Google Scholar 

  116. 116.

    Amereller M, Schedlbauer T, Moosbauer D, Schreiner C, Stock C, Wudy F, Zugmann S, Hammer H, Maurer A, Gschwind R (2014) Electrolytes for lithium and lithium ion batteries: from synthesis of novel lithium borates and ionic liquids to development of novel measurement methods. Prog Solid State Chem 42(4):39–56

    CAS  Google Scholar 

  117. 117.

    Nishi Y (2001) The development of lithium ion secondary batteries. Chem Rec 1(5):406–413

    CAS  Article  Google Scholar 

  118. 118.

    Broussely M, Archdale G (2004) Li-ion batteries and portable power source prospects for the next 5–10 years. J Power Sources 136(2):386–394

    CAS  Article  Google Scholar 

  119. 119.

    Pillot C (2017) The rechargeable battery market and main trends 2016–2025. Talk at Advanced Automotive Battery Conference (AABC) Europe, Mainz

  120. 120.

    Whittingham MS (2014) Ultimate limits to intercalation reactions for lithium batteries. Chem Rev 114(23):11414–11443

    CAS  Article  Google Scholar 

  121. 121.

    Shao YY, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang JG, Wang Y, Liu J (2013) Making Li-air batteries rechargeable: material challenges. Adv Funct Mater 23(8):987–1004

    CAS  Article  Google Scholar 

  122. 122.

    Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162

    CAS  Article  Google Scholar 

  123. 123.

    Chen L, Shaw LL (2014) Recent advances in lithium-sulfur batteries. J Power Sources 267:770–783

    CAS  Article  Google Scholar 

  124. 124.

    Grande L, Paillard E, Hassoun J, Park J-B, Lee Y-J, Sun Y-K, Passerini S, Scrosati B (2014) The lithium/air battery: still an emerging system or a practical reality? Adv Mater 27(5):784-800

  125. 125.

    Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG (2006) Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc 128(4):1390–1393

    CAS  Article  Google Scholar 

  126. 126.

    Hagen M, Hanselmann D, Ahlbrecht K, Maça R, Gerber D, Tübke J (2015) Lithium–sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv Energy Mater 5(16):1401986

    Article  CAS  Google Scholar 

  127. 127.

    Blurton KF, Sammells AF (1979) Metal/air batteries: their status and potential—a review. J Power Sources 4(4):263–279

    CAS  Article  Google Scholar 

  128. 128.

    Abraham KM, Jiang Z (1996) Solid polymer electrolyte-based oxygen batteries. US Patent 5:510,209

    Google Scholar 

  129. 129.

    Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1–5

    CAS  Article  Google Scholar 

  130. 130.

    Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 1:16013

    CAS  Article  Google Scholar 

  131. 131.

    Danuta H, Juliusz U (1962) Electric dry cells and storage batteries. US Patent 3:043,896

    Google Scholar 

  132. 132.

    Rao MLB (1966) Organic electrolyte cells. US Patent 3413154 A

  133. 133.

    Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB (1979) A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc 126(4):523–527

    CAS  Article  Google Scholar 

  134. 134.

    Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506

    CAS  Article  Google Scholar 

  135. 135.

    Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc 156(8):A694–A702

    CAS  Article  Google Scholar 

  136. 136.

    Yin Y-X, Xin S, Guo Y-G, Wan L-J (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52(50):13186–13200

    CAS  Article  Google Scholar 

  137. 137.

    SionPower http://www.sionpower.com (Accessed January 20, 2017)

  138. 138.

    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682

    CAS  Article  Google Scholar 

  139. 139.

    Klein F, Jache B, Bhide A, Adelhelm P (2013) Conversion reactions for sodium-ion batteries. Phys Chem Chem Phys 15(38):15876–15887

    CAS  Article  Google Scholar 

  140. 140.

    Ellis BL, Nazar LF (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mat Sci 16(4):168–177

    CAS  Article  Google Scholar 

  141. 141.

    Bachman JC, Muy S, Grimaud A, Chang H-H, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2016) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162

    CAS  Article  Google Scholar 

  142. 142.

    Hu Y-S (2016) Batteries: getting solid. Nature Energy 1:16042

    CAS  Article  Google Scholar 

  143. 143.

    Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu QH (2011) Redox flow batteries: a review. J Appl Electrochem 41(10):1137–1164

    CAS  Article  Google Scholar 

  144. 144.

    Aurbach D, Weissman I, Gofer Y, Levi E (2003) Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem Rec 3(1):61–73

    CAS  Article  Google Scholar 

  145. 145.

    Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN (2014) Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci 66(0):1–86

  146. 146.

    Jian Z, Luo W, Ji X (2015) Carbon electrodes for K-ion batteries. J Am Chem Soc 137:11566–11569

  147. 147.

    Vaalma C, Giffin GA, Buchholz D, Passerini S (2016) Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J Electrochem Soc 163(7):A1295–A1299

    CAS  Article  Google Scholar 

  148. 148.

    Ponrouch A, Frontera C, Barde F, Palacin MR (2016) Towards a calcium-based rechargeable battery. Nat Mater 15(2):169

    CAS  Article  Google Scholar 

  149. 149.

    Reinsberg P, Bondue CJ, Baltruschat H (2016) Calcium-oxygen batteries as a promising alternative to sodium-oxygen batteries. J Phys Chem C 120(39):22179–22185

    CAS  Article  Google Scholar 

  150. 150.

    Wachtler M, Wagner MR, Schmied M, Winter M, Besenhard JO (2001) The effect of the binder morphology on the cycling stability of Li–alloy composite electrodes. J Electroanal Chem 510(1):12–19

    CAS  Article  Google Scholar 

  151. 151.

    Lux S, Schappacher F, Balducci A, Passerini S, Winter M (2010) Low cost, environmentally benign binders for lithium-ion batteries. J Electrochem Soc 157(3):A320–A325

    CAS  Article  Google Scholar 

  152. 152.

    Qi X, Blizanac B, DuPasquier A, Oljaca M, Li J, Winter M (2013) Understanding the influence of conductive carbon additives surface area on the rate performance of LiFePO4 cathodes for lithium ion batteries. Carbon 64:334–340

    CAS  Article  Google Scholar 

  153. 153.

    Qi X, Blizanac B, DuPasquier A, Meister P, Placke T, Oljaca M, Li J, Winter M (2014) Investigation of PF6 and TFSI anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries. Phys Chem Chem Phys 16(46):25306–25313

    CAS  Article  Google Scholar 

  154. 154.

    Qi X, Blizanac B, DuPasquier A, Lal A, Niehoff P, Placke T, Oljaca M, Li J, Winter M (2015) Influence of thermal treated carbon black conductive additive on the performance of high voltage spinel Cr-doped LiNi0.5Mn1.5O4 composite cathode electrode. J Electrochem Soc 162(3):A339–A343

    CAS  Article  Google Scholar 

  155. 155.

    Bockholt H, Haselrieder W, Kwade A (2013) Intensive dry and wet mixing influencing the structural and electrochemical properties of secondary lithium-ion battery cathodes. ECS Trans 50(26):25–35

    Article  CAS  Google Scholar 

  156. 156.

    Bockholt H, Haselrieder W, Kwade A (2016) Intensive powder mixing for dry dispersing of carbon black and its relevance for lithium-ion battery cathodes. Powder Technol 297:266–274

    CAS  Article  Google Scholar 

  157. 157.

    Bauer W, Nötzel D, Wenzel V, Nirschl H (2015) Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries. J Power Sources 288:359–367

    CAS  Article  Google Scholar 

  158. 158.

    Mazouzi D, Karkar Z, Hernandez CR, Manero PJ, Guyomard D, Roue L, Lestriez B (2015) Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. J Power Sources 280:533–549

    CAS  Article  Google Scholar 

  159. 159.

    Porcher W, Lestriez B, Jouanneau S, Guyomard D (2010) Optimizing the surfactant for the aqueous processing of LiFePO4 composite electrodes. J Power Sources 195(9):2835–2843

    CAS  Article  Google Scholar 

  160. 160.

    Du Z, Wood III DL, Daniel C, Kalnaus S, Li J (2017) Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries. J Appl Electrochem 47(3):405–415

  161. 161.

    Bitsch B, Gallasch T, Schroeder M, Börner M, Winter M, Willenbacher N (2016) Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes. J Power Sources 328:114–123

    CAS  Article  Google Scholar 

  162. 162.

    Novák P, Scheifele W, Winter M, Haas O (1997) Graphite electrodes with tailored porosity for rechargeable ion-transfer batteries. J Power Sources 68(2):267–270

    Article  Google Scholar 

  163. 163.

    Haselrieder W, Ivanov S, Christen DK, Bockholt H, Kwade A (2013) Impact of the calendering process on the interfacial structure and the related electrochemical performance of secondary lithium-ion batteries. ECS Trans 50(26):59–70

    Article  CAS  Google Scholar 

  164. 164.

    Antartis D, Dillon S, Chasiotis I (2015) Effect of porosity on electrochemical and mechanical properties of composite Li-ion anodes. J Compos Mater 49(15):1849–1862

  165. 165.

    Zhang W-J (2011) Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J Power Sources 196(3):877–885

    CAS  Article  Google Scholar 

  166. 166.

    Zhao H, Yuan W, Liu G (2015) Hierarchical electrode design of high-capacity alloy nanomaterials for lithium-ion batteries. Nano Today 10(2):193–212

    CAS  Article  Google Scholar 

  167. 167.

    Hochgatterer N, Schweiger M, Koller S, Raimann P, Wöhrle T, Wurm C, Winter M (2008) Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem Solid-State Lett 11(5):A76–A80

    CAS  Article  Google Scholar 

  168. 168.

    Vogl U, Das P, Weber A, Winter M, Kostecki R, Lux S (2014) Mechanism of interactions between CMC binder and Si single crystal facets. Langmuir 30(34):10299–10307

    CAS  Article  Google Scholar 

  169. 169.

    Nelson P, Gallagher K, Bloom I BatPaC (battery performance and cost) software, Argonne National Lab, http://www.cse.anl.gov/BatPaC/ (Accessed on January 10, 2017)

  170. 170.

    Warner J (2015) The handbook of lithium-ion battery pack design—chemistry, components, types and terminology. Elsevier Science, Burlington

  171. 171.

    3M http://multimedia.3m.com/mws/media/756169O/3mtm-battery-materials.pdf (Accessed March 20, 2017)

  172. 172.

    Korthauer R (2013) Handbuch Lithium-Ionen-Batterien. Springer Vieweg, Wiesbaden

  173. 173.

    Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039

    CAS  Article  Google Scholar 

  174. 174.

    Obrovac MN, Chevrier VL (2014) Alloy negative electrodes for Li-ion batteries. Chem Rev 114(23):11444–11502

    CAS  Article  Google Scholar 

  175. 175.

    Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196(1):13–24

    CAS  Article  Google Scholar 

  176. 176.

    Qiu B, Zhang M, Xia Y, Liu Z, Meng YS (2017) Understanding and controlling anionic electrochemical activity in high-capacity oxides for next generation Li-ion batteries. Chem Mater 29(3):908–915

    CAS  Article  Google Scholar 

  177. 177.

    Noh H-J, Youn S, Yoon CS, Sun Y-K (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130

    CAS  Article  Google Scholar 

  178. 178.

    Li J, Kloepsch R, Stan MC, Nowak S, Kunze M, Winter M, Passerini S (2011) Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability. J Power Sources 196(10):4821–4825

    CAS  Article  Google Scholar 

  179. 179.

    Xia Q, Zhao X, Xu M, Ding Z, Liu J, Chen L, Ivey DG, Wei W (2015) A Li-rich Layered@ Spinel@ Carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method. J Mater Chem A 3(7):3995–4003

    CAS  Article  Google Scholar 

  180. 180.

    Liu H, Wang J, Zhang X, Zhou D, Qi X, Qiu B, Fang J, Kloepsch R, Schumacher G, Liu Z, Li J (2016) Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: the critical effects of surface orientations and particle size. ACS Appl Mater Interfaces 8(7):4661–4675

  181. 181.

    Liu N, Lu Z, Zhao J, McDowell MT, Lee H-W, Zhao W, Cui Y (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nano 9(3):187–192

    CAS  Article  Google Scholar 

  182. 182.

    Winter M, Besenhard JO, Albering JH, Yang J, Wachtler M (1998) Lithium storage alloys as anode materials for lithium ion batteries. Prog Batt Batt Mater 17:208

    CAS  Google Scholar 

  183. 183.

    Besenhard J, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sources 68(1):87–90

    CAS  Article  Google Scholar 

  184. 184.

    Qian J, Adams BD, Zheng J, Xu W, Henderson WA, Wang J, Bowden ME, Xu S, Hu J, Zhang J-G (2016) Anode-free rechargeable lithium metal batteries. Adv Funct Mater 26(39):7094–7102

    CAS  Article  Google Scholar 

  185. 185.

    Brückner J, Thieme S, Grossmann HT, Dörfler S, Althues H, Kaskel S (2014) Lithium–sulfur batteries: influence of C-rate, amount of electrolyte and sulfur loading on cycle performance. J Power Sources 268:82–87

    Article  CAS  Google Scholar 

  186. 186.

    Greszler T, Gu W, Goebel S, Masten D, Lakshmanan B (2012) Li-air and Li-sulfur in an automotive system context. Talk at Beyond Lithium Ion 5, Berkeley, CA

  187. 187.

    Armand M (1994) The history of polymer electrolytes. Solid State Ionics 69(3):309–319

    CAS  Article  Google Scholar 

  188. 188.

    Greatbatch W, Holmes CF (1992) The lithium/iodine battery: a historical perspective. Pacing Clin Electrophysiol 15(11):2034–2036

    CAS  Article  Google Scholar 

  189. 189.

    Vetter J, Novak P, Wagner MR, Veit C, Möller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147(1–2):269–281

    CAS  Article  Google Scholar 

  190. 190.

    Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M (2014) A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 7(2):627–631

    CAS  Article  Google Scholar 

  191. 191.

    Manthiram A, Yu X, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:16103

    CAS  Article  Google Scholar 

  192. 192.

    Pieczonka NPW, Liu Z, Lu P, Olson KL, Moote J, Powell BR, Kim J-H (2013) Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J Phys Chem C 117(31):15947–15957

    CAS  Article  Google Scholar 

  193. 193.

    Gallus DR, Schmitz R, Wagner R, Hoffmann B, Nowak S, Cekic-Laskovic I, Schmitz RW, Winter M (2014) The influence of different conducting salts on the metal dissolution and capacity fading of NCM cathode material. Electrochim Acta 134:393–398

    CAS  Article  Google Scholar 

  194. 194.

    Börner M, Klamor S, Hoffmann B, Schroeder M, Nowak S, Würsig A, Winter M, Schappacher F (2016) Investigations on the C-rate and temperature dependence of manganese dissolution/deposition in LiMn2O4/Li4Ti5O12 lithium ion batteries. J Electrochem Soc 163(6):A831–A837

    Article  CAS  Google Scholar 

  195. 195.

    Evertz M, Horsthemke F, Kasnatscheew J, Börner M, Winter M, Nowak S (2016) Unraveling transition metal dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in lithium ion full cells by using the total reflection X-ray fluorescence technique. J Power Sources 329:364–371

    CAS  Article  Google Scholar 

  196. 196.

    Jia H, Kloepsch R, He X, Evertz M, Nowak S, Li J, Winter M, Placke T (2016) Nanostructured ZnFe2O4 as anode material for lithium ion batteries: ionic liquid-assisted synthesis and performance evaluation with special emphasis on comparative metal dissolution. Acta Chim Slov 63(3):470–483

    CAS  Article  Google Scholar 

  197. 197.

    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537

    CAS  Article  Google Scholar 

  198. 198.

    Kato Y, Kawamoto K, Kanno R, Hirayama M (2012) Discharge performance of all-solid-state battery using a lithium superionic conductor Li10GeP2S12. Electrochemistry 80(10):749–751

    CAS  Article  Google Scholar 

  199. 199.

    Gambe Y, Sun Y, Honma I (2015) Development of bipolar all-solid-state lithium battery based on quasi-solid-state electrolyte containing tetraglyme-LiTFSA equimolar complex. Sci Rep 5:8869–8872

  200. 200.

    Kloepsch R, Placke T, Winter M (2017) Festelektrolytbatterien: Sinn, Unsinn, Realitätssinn. Proceedings, Batterieforum Deutschland, January 25–27, Berlin, Germany

  201. 201.

    Armand M (1983) Polymer solid electrolytes—an overview. Solid State Ionics 9:745–754

    Article  Google Scholar 

  202. 202.

    Armand MB (1986) Polymer electrolytes. Annu Rev Mater Sci 16(1):245–261

    CAS  Article  Google Scholar 

  203. 203.

    Baril D, Michot C, Armand M (1997) Electrochemistry of liquids vs. solids: polymer electrolytes. Solid State Ionics 94(1):35–47

    CAS  Article  Google Scholar 

  204. 204.

    Murata K, Izuchi S, Yoshihisa Y (2000) An overview of the research and development of solid polymer electrolyte batteries. Electrochim Acta 45(8–9):1501–1508

    CAS  Article  Google Scholar 

  205. 205.

    Rupp B, Schmuck M, Balducci A, Winter M, Kern W (2008) Polymer electrolyte for lithium batteries based on photochemically crosslinked poly (ethylene oxide) and ionic liquid. Eur Polym J 44(9):2986–2990

    CAS  Article  Google Scholar 

  206. 206.

    Isken P, Winter M, Passerini S, Lex-Balducci A (2013) Methacrylate based gel polymer electrolyte for lithium-ion batteries. J Power Sources 225:157–162

    CAS  Article  Google Scholar 

  207. 207.

    Schroeder M, Isken P, Winter M, Passerini S, Lex-Balducci A, Balducci A (2013) An investigation on the use of a methacrylate-based gel polymer electrolyte in high power devices. J Electrochem Soc 160(10):A1753–A1758

    CAS  Article  Google Scholar 

  208. 208.

    Jankowsky S, Hiller MM, Fromm O, Winter M, Wiemhoefer H-D (2015) Enhanced lithium-ion transport in polyphosphazene based gel polymer electrolytes. Electrochim Acta 155:364–371

    CAS  Article  Google Scholar 

  209. 209.

    Bruce PG, West AR (1983) The A-C conductivity of polycrystalline LISICON, Li2+2x Zn1-x GeO4, and a model for intergranular constriction resistances. J Electrochem Soc 130(3):662–669

    CAS  Article  Google Scholar 

  210. 210.

    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1990) Ionic-conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137(4):1023–1027

    CAS  Article  Google Scholar 

  211. 211.

    Inaguma Y, Chen LQ, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) High ionic-conductivity in lithium lanthanum titanate. Solid State Commun 86(10):689–693

    CAS  Article  Google Scholar 

  212. 212.

    Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem, Int Ed 46(41):7778–7781

    CAS  Article  Google Scholar 

  213. 213.

    Yu XH, Bates JB, Jellison GE, Hart FX (1997) A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J Electrochem Soc 144(2):524–532

    CAS  Article  Google Scholar 

  214. 214.

    Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo YF, Ceder G (2015) Design principles for solid-state lithium superionic conductors. Nat Mater 14(10):1026

    CAS  Article  Google Scholar 

  215. 215.

    Sakuda A, Hayashi A, Tatsumisago M (2013) Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci Rep 3:2261

  216. 216.

    Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 182(1):116–119

    CAS  Article  Google Scholar 

  217. 217.

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10(9):682–686

    CAS  Article  Google Scholar 

  218. 218.

    Wenzel S, Randau S, Leichtweiss T, Weber DA, Sann J, Zeier WG, Janek J (2016) Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem Mater 28(7):2400–2407

    CAS  Article  Google Scholar 

  219. 219.

    Wenzel S, Weber DA, Leichtweiss T, Busche MR, Sann J, Janek J (2016) Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ionics 286:24–33

    CAS  Article  Google Scholar 

  220. 220.

    Zhu YZ, He XF, Mo YF (2016) First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A 4(9):3253–3266

    CAS  Article  Google Scholar 

  221. 221.

    Metalary http://metalary.com/lithium-price/. Accessed 8 March 2017

  222. 222.

    Cekic-Laskovic I, Wagner R, Wiemers-Meyer S, Nowak S, Winter M (2016) Liquid electrolytes—just a commodity and a phase-out model? Proceedings, Graz Battery Days, September 26–28, Graz, Austria

  223. 223.

    Bieker G, Winter M, Bieker P (2015) Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys Chem Chem Phys 17(14):8670–8679

    CAS  Article  Google Scholar 

  224. 224.

    Ryou MH, Lee YM, Lee Y, Winter M, Bieker P (2015) Surface treatment: mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv Funct Mater 25(6):825–825

    Article  Google Scholar 

  225. 225.

    Martha SK, Nanda J, Kim Y, Unocic RR, Pannala S, Dudney NJ (2013) Solid electrolyte coated high voltage layered-layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2. J Mater Chem A 1(18):5587–5595

    CAS  Article  Google Scholar 

  226. 226.

    Li XF, Liu J, Banis MN, Lushington A, Li RY, Cai M, Sun XL (2014) Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ Sci 7(2):768–778

    CAS  Article  Google Scholar 

  227. 227.

    Woodford WH, Carter WC, Chiang Y-M (2012) Design criteria for electrochemical shock resistant battery electrodes. Energy Environ Sci 5(7):8014–8024

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the German Ministry of Education and Research (BMBF) for funding this work in the project “BenchBatt” (03XP0047A). The authors also want to thank Andre Bar for the preparation of various graphics for this manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tobias Placke or Martin Winter.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Placke, T., Kloepsch, R., Dühnen, S. et al. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J Solid State Electrochem 21, 1939–1964 (2017). https://doi.org/10.1007/s10008-017-3610-7

Download citation

Keywords

  • Lithium ion batteries
  • Lithium metal batteries
  • Post-lithium ion batteries
  • Energy density
  • History of batteries