Skip to main content
Log in

BiFeO3-coated spinel LiNi0.5Mn1.5O4 with improved electrochemical performance as cathode materials for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Spinel LiNi0.5Mn1.5O4 cathode material is a promising candidate for next-generation rechargeable lithium-ion batteries. In this work, BiFeO3-coated LiNi0.5Mn1.5O4 materials were prepared via a wet chemical method and the structure, morphology, and electrochemical performance of the materials were studied. The coating of BiFeO3 has no significant impact on the crystal structure of LiNi0.5Mn1.5O4. All BiFeO3-coated LiNi0.5Mn1.5O4 materials exhibit cubic spinel structure with space group of Fd3m. Thin BiFeO3 layers were successfully coated on the surface of LiNi0.5Mn1.5O4 particles. The coating of 1.0 wt% BiFeO3 on the surface of LiNi0.5Mn1.5O4 exhibits a considerable enhancement in specific capacity, cyclic stability, and rate performance. The initial discharge capacity of 118.5 mAh g−1 is obtained for 1.0 wt% BiFeO3-coated LiNi0.5Mn1.5O4 with very high capacity retention of 89.11% at 0.1 C after 100 cycles. Meanwhile, 1.0 wt% BiFeO3-coated LiNi0.5Mn1.5O4 electrode shows excellent rate performance with discharge capacities of 117.5, 110.2, 85.8, and 74.8 mAh g−1 at 1, 2, 5, and 10 C, respectively, which is higher than that of LiNi0.5Mn1.5O4 (97.3, 90, 77.5, and 60.9 mAh g−1, respectively). The surface coating of BiFeO3 effectively decreases charge transfer resistance and inhibits side reactions between active materials and electrolyte and thus induces the improved electrochemical performance of LiNi0.5Mn1.5O4 materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu C, Li F, Ma LP, Cheng HM (2010) Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  2. Dunn B, Kamath H, Tarascon JM (2011) Science 334:928–935

    Article  CAS  Google Scholar 

  3. Scrosati B, Garche J (2010) J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  4. Manthiram A (2011) J Phys Chem Lett 2:176–184

    Article  CAS  Google Scholar 

  5. Chong J, Xun S, Zhang JP, Song XY, Xie HM, Battalglia V, Wang RS (2014) Chem-Eur J 20:7479–7485

    Article  CAS  Google Scholar 

  6. Wang Y, Yang G, Yang Z, Zhang LC, Fu M, Long H, Li ZH, Huang YH, Lu PX (2013) Electrochim Acta 102:416–422

    Article  CAS  Google Scholar 

  7. Fang X, Lu Y, Ding N, Feng XY, Liu C, Chen CH (2010) Electrochim Acta 55:832–837

    Article  CAS  Google Scholar 

  8. Mitzushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Mater Res Bull 15:783–789

    Article  Google Scholar 

  9. Kang B, Ceder G (2009) Nature 458:190–193

    Article  CAS  Google Scholar 

  10. Santhanam R, Rambabu B (2010) J Power Sources 195:5442–5451

    Article  CAS  Google Scholar 

  11. Eftekhari A (2004) J Power Sources 132:240–243

    Article  CAS  Google Scholar 

  12. Lu DS, Xu MQ, Zhou L, Garsuch A, Lucht BL (2013) J Electrochem Soc 160:A3138–A3143

    Article  CAS  Google Scholar 

  13. Yang L, Ravdel B, Lucht BL (2010) Electrochem Solid-State Lett 13:A95–A97

    Article  CAS  Google Scholar 

  14. Wu HM, Belharouak I, Abouimrane A, Sun Y-K, Amine K (2010) J Power Sources 195:2909–2913

    Article  CAS  Google Scholar 

  15. Liu D, Trottier J, Charest P, Fréchette J, Guerfi A, Mauger A, Julien CM, Zaghib K (2012) J Power Sources 204:127–132

    Article  CAS  Google Scholar 

  16. Sha O, Tang ZY, Wang SL, Yuan W, Qiao Z, Xu Q, Ma L (2012) Electrochim Acta 77:250–255

    Article  CAS  Google Scholar 

  17. Zhong GB, Wang YY, Zhang ZC, Chen CH (2011) Electrochim Acta 56:6554–6561

    Article  CAS  Google Scholar 

  18. Yang Z, Jiang Y, Kim J-H, Wu Y, Li G-L, Kim JH (2014) Electrochim Acta 117:76–83

    Article  CAS  Google Scholar 

  19. Mo MY, Hui KS, Hong XT, Guo JS, Ye CC, Li AJ, Hu NQ (2014) Appl Surf Sci 290:412–418

    Article  CAS  Google Scholar 

  20. Liu J, Manthiram A (2009) J Phys Chem C 113:15073–15079

    Article  CAS  Google Scholar 

  21. Xu H, Liu XJ, Peng QW, Lu ZW (2014) Mater Express 4:72–78

    Article  CAS  Google Scholar 

  22. Wang HL, Tan TA, Yang P, Lai MO, Lu L (2011) J Phys Chem C 115:6102–6110

    Article  CAS  Google Scholar 

  23. Le M-l-P, Strobel P, Alloin F, Pagnier T (2010) Electrochim Acta 56:592–599

    Article  CAS  Google Scholar 

  24. Sun Y-K, Lee Y-S, Yoshio M, Amine K (2003) J Electrochem Soc 150:L11–L11

    Article  CAS  Google Scholar 

  25. Arrebola JC, Caballero A, Hernan L, Morales J (2010) J Power Sources 195:4278–4284

    Article  CAS  Google Scholar 

  26. Liu J, Manthiram A (2009) J Electrochem Soc 156:A833–A838

    Article  CAS  Google Scholar 

  27. Huang B, Li XH, Wang ZX, Guo HJ, Xiong XH, Wang JX (2014) J Alloys Compd 583:313–319

    Article  CAS  Google Scholar 

  28. Li J, Zhang Y, Li J, Wang L, He X, Gao J (2011) Ionics 17:671–675

    Article  CAS  Google Scholar 

  29. Kraytsberg A, Drezner H, Auinat M, Shapira A, Solomatin N, Axmann P, Margret W-M, Yair E-E (2015) ChemNanoMat 1:577–585

    Article  CAS  Google Scholar 

  30. Lee K-S, Myung S-T, Amine K, Yashiro H, Sun Y-K (2009) J Mater Chem 19:1995–2005

    Article  CAS  Google Scholar 

  31. Liu D, Bai Y, Zhao S, Zhang W (2012) J Power Sources 219:333–338

    Article  CAS  Google Scholar 

  32. Wang HB, Pan QM, Cheng YX, Zhao JW, Yin GP (2009) Electrochim Acta 54:2851–2855

    Article  CAS  Google Scholar 

  33. Gandrud KB, Nilsen O, Fjellvåg H (2016) J Power Sources 306:454–458

    Article  CAS  Google Scholar 

  34. Wang Y, Wang J, Yang J, Yang J, Nuli Y (2006) Adv Funct Mater 16:2135–2140

    Article  CAS  Google Scholar 

  35. Luo SH, Gao M, Chen J, Xing XR, Li Z, Zhou XT, Wen W (2011) J New Mater Electrochem Syst 14:141–146

    CAS  Google Scholar 

  36. Xia H, Yan F, Lai MO, Lu L, Song WD (2009) Funct Mater Lett 02:163–167

    Article  CAS  Google Scholar 

  37. Baek S-H, Folkman CM, Park J-W, Sanghan L, Chung WB, Tomas T, Eom C-B (2011) Adv Mater 23:1621–1625

    Article  CAS  Google Scholar 

  38. Singh H, Kumar A, Yadav KL (2011) Mater Sci Eng B 176:540–547

    Article  CAS  Google Scholar 

  39. Wang YP, Zhou L, Zhang MF, Chen XY, Liu J-M, Liu ZG (2004) Appl Phys Lett 84:1731–1733

    Article  CAS  Google Scholar 

  40. Chang ZR, Dai DM, Tang HW, Yu X, Yuan X-Z, Wang HJ (2010) Electrochim Acta 55:5506–5510

    Article  CAS  Google Scholar 

  41. Jin Y-C, Lin C-Y, Duh J-G (2012) Electrochim Acta 69:45–50

    Article  CAS  Google Scholar 

  42. Quan Z, Hu H, Xu S, Liu W, Fang GJ, Li MY, Zhao XZ (2008) J Sol-Gel Sci Technol 48:261–266

    Article  CAS  Google Scholar 

  43. Oh SH, Chung KY, Jeon SH, Kim CS, Cho WI, Cho BW (2009) J Alloys Comp 469:244–250

    Article  CAS  Google Scholar 

  44. Amdouni N, Zaghib K, Gendron F, Mauger A, Julien CM (2006) Ionics 12:117–126

    Article  CAS  Google Scholar 

  45. Cho J-H, Park J-H, Lee M-H, Song H-K, Lee S-Y (2012) Energy Environ Sci 5:7124–7131

    Article  CAS  Google Scholar 

  46. Xu G-L, Xu Y-F, Fang J-C, Fu F, Sun H, Huang L, Yang S, Sun S-G (2013) ACS Appl Mater Interfaces 5:6316–6323

    Article  CAS  Google Scholar 

  47. Fu F, Xu G-L, Wang Q, Deng Y-P, Li X, Li J-T, Huang L, Sun S-G (2013) J Mater Chem A 1:3860–3864

    Article  CAS  Google Scholar 

  48. Wang G, Wen WC, Chen SH, Yu RZ, Wang XY, Yang XK (2016) Electrochimca Acta 212:791–799

    Article  Google Scholar 

  49. Gao XW, Deng YF, Wexler D, Chen GH, Chou SL, Liu HK, Shi ZC, Wang JZ (2015) J Mater Chem A 3:404–411

    Article  CAS  Google Scholar 

  50. Sun H, Xia B, Liu W, Fang G, Wu J, Wang H, Li D (2015) Appl Surf Sci 331:309–314

    Article  CAS  Google Scholar 

  51. Shin W-K, Lee Y-S, Kim D-W (2014) J Mater Chem A 2:6863–6869

    Article  CAS  Google Scholar 

  52. Deng JC, Xu YL, Li L, Feng TY (2016) J Mater Chem A 4:6561–6568

    Article  CAS  Google Scholar 

  53. Zhao G, Lin Y, Zhou T, Lin Y, Huang Y, Huang Z (2012) J Power Sources 215:63–68

    Article  CAS  Google Scholar 

  54. Wen W, Yang X, Wang X, Shu LGH (2015) J Solid State Electrochem 19:1235–1246

    Article  CAS  Google Scholar 

  55. Wang J, Yu Y-Y, Wu B-H, Lin W-Q, Li J-Y, Zhao J-B (2015) J Mater Chem A 3:2353–2360

    Article  CAS  Google Scholar 

  56. Liu Y, Zhang M, Xia Y, Qiu B, Liu Z, Li X (2014) J Power Sources 256:66–71

    Article  CAS  Google Scholar 

  57. Liu Y, Lu Z, Deng C, Ding J, Xu Y, Lu X, Yang G (2017) J Mater Chem A 5:996–1004

    Article  CAS  Google Scholar 

  58. Xi LJ, Wang HE, Lu ZG, Yang SL, Ma RG, Deng JQ, Chung CY (2012) J Power Sources 198:251–257

    Article  CAS  Google Scholar 

  59. Wang J, Lin WQ, Wu BH, Zhao JB (2014) Electrochim Acta 145:245–253

    Article  CAS  Google Scholar 

  60. Lin HB, Zhang YM, Hu JN, Wang YT, Xing LD, Xu MQ, Li XP, Li WS (2014) J Power Sources 257:37–44

    Article  CAS  Google Scholar 

  61. Dedryvère R, Foix D, Franger S, Patoux S, Daniel L, Gonbeau D (2010) J Phys Chem C 114:10999–11008

    Article  Google Scholar 

  62. Liu J, Manthiram A (2009) Chem Mater 21:1695–1707

    Article  CAS  Google Scholar 

  63. Duncan H, Abu-Lebdeh Y, Davidson IJ (2010) J Electrochem Soc 157:A528–A535

    Article  CAS  Google Scholar 

  64. Aurbach D, Markovsky B, Talyossef Y, Salitra G, Kim H-J, Choi S (2006) J Power Sources 162:780–789

    Article  CAS  Google Scholar 

  65. Wang D, Li XH, Wang ZX, Guo HJ, Huang ZJ, Kong LK, Ru JJ (2015) J Alloys Compd 647:612–619

    Article  CAS  Google Scholar 

  66. Wang YZ, Shao X, Xu HY, Xie M, Deng SX, Wang H, Liu JB, Yan H (2013) J Power Sources 226:140–148

    Article  CAS  Google Scholar 

  67. Tasaki K, Goldberg A, Lian JJ, Walker M, Timmons A, Harris S (2009) J Electrochem Soc 156:A1019–A1027

    Article  CAS  Google Scholar 

  68. Dai Y, Cai L, White RE (2012) J Electrochem Soc 160:A182–A190

    Article  Google Scholar 

  69. Park SB, Shin HC, Lee W-G, Cho WI, Jang H (2008) J Power Sources 180:597–601

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the large precision instrument projects of Sichuan Normal University (DJ 2015-40, DJ 2015-45, and DJ 2016-27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunmim Lin.

Electronic supplementary material

ESM 1

(DOC 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, J., Wu, H., Deng, Y. et al. BiFeO3-coated spinel LiNi0.5Mn1.5O4 with improved electrochemical performance as cathode materials for lithium-ion batteries. J Solid State Electrochem 21, 2849–2858 (2017). https://doi.org/10.1007/s10008-017-3608-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3608-1

Keywords

Navigation