Skip to main content

Advertisement

Log in

Enhanced catalytic activity of ppy-coated pencil electrode in the presence of chitosan and Au nanoparticles for hydrogen evolution reaction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Catalytically active and low-cost electrocatalysts for the production of hydrogen from water are extremely important for future renewable energy systems. Here, we report the fabrication of a facile pencil graphite electrode modified with polypyrrole-chitosan/Au nanoparticles and tested its performance for electrocatalytic hydrogen evolution reaction (HER) as a model process. The porous surface of the pencil graphite electrode (PGE) was modified potentiostically by polypyrrole (PPy) at various film thicknesses in the presence of chitosan (Chi), which is a natural biopolymer, in the electrolyte medium. After the optimum film thickness had been obtained, the Au particles electrodeposited on to the PPy/Chi composite film at the nano-scale to benefit both from its well-known high catalytic activity and to reduce the amount of precious metal Au to prepare a low-cost eletrocatalyst. The performance of this composite catalyst on the H+ reduction (Had formation) and thereby on the hydrogen evolution was investigated. Data from cyclic voltammetry (CV), Tafel polarization curves, and electrochemical impedance spectroscopy (EIS) demonstrated that the current densities related to the electron transfer rate changed with the thickness of the composite film, and the catalytic activity was enhanced more with deposition small amount of Au on to the catalyst surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hassan S, Suzuki M, El-Moneim A (2014) A synthesis of MnO2-chitosan nanocomposite by one-step electrodeposition for electrochemical energy storage application. J Power Sources 246:68–73

    Article  CAS  Google Scholar 

  2. Hao P, Zhao Z, Leng Y, Tian J, Sang Y, Boughton RI, Wong CP, Liu H, Yang B (2015) Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 15:9–23

    Article  CAS  Google Scholar 

  3. Chen J, Lim B, Lee EP, Xia Y (2009) Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4:81–95

    Article  Google Scholar 

  4. Navarro-Flores E, Omanovic S (2005) Hydrogen evolution on nickel incorporated in three-dimensional conducting polymer layers. J Mol Catal A:Chem 242:182–194

    Article  CAS  Google Scholar 

  5. Dalla Corte DA, Torres C, dos Santos Correa P, Rieder ES, de Malfatti CF (2012) The hydrogen evolution reaction on nickel-polyaniline composite electrodes. Int J Hydrog Energy 37:3025–3032

    Article  CAS  Google Scholar 

  6. Liao L, Zhu J, Bian X, Zhu L, Scanlon MD, Girault HH, Liu B (2013) MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv Func Mater 23:5326–5333

    Article  CAS  Google Scholar 

  7. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299

    Article  CAS  Google Scholar 

  8. Alexis D, Omanovic S (2006) Ni and Ni-Mo hydrogen evolution electrocatalysts electrodeposited in a polyaniline matrix. J Power Sources 158(1):464–476

    Article  Google Scholar 

  9. Rheinlander PJ, Herranz J, Durst J, Gasteiger HA (2014) Kinetics of the hydrogen oxidation/evolution reaction on polycrystalline platinum in alkaline electrolyte reaction order with respect to hydrogen pressure. J Electrochem Soc 161(14):F1448–F1457

    Article  Google Scholar 

  10. Lu Q, Hutchings GS, Yu W, Zhou Y, Forest RV, Tao R, Rosen J, Yonemoto BT, Cao Z, Zheng H, Xiao JQ, Jiao F, Chen JG (2015) Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat Commun 6(6567):1–8

    CAS  Google Scholar 

  11. Zhang Z, Li W, Yuen MF, Ng T-W, Tang Y, Lee C-S, Chen X, Zhang W (2015) Ni-doped MoS2 nanoparticles as highly active hydrogen evolution electrocatalysts. Nano Energy 18:196–204

    Article  CAS  Google Scholar 

  12. Shen X, Xia X, Ye W, Du Y, Wang C (2017) Hexagram-like CoS-MoS2 composites with enhanced activity for hydrogen evolution reaction. J Solid State Electrochem 21(2):409–417

    Article  CAS  Google Scholar 

  13. Tuomi S, Guil-Lopez R, Kallio T (2016) Molybdenum carbide nanoparticles as a catalyst for the hydrogen evolution reaction and the effect of pH. J Catal 334:102–109

    Article  CAS  Google Scholar 

  14. Chen S, Thind SS, Chen A (2016) Nanostructured materials for water splitting—state of the art and future needs. Electrochem Commun 63:10–17

    Article  CAS  Google Scholar 

  15. Gong ZQ, Sujari ANA, Ab Ghani S (2012) Electrochemical fabrication, characterization and application of carboxylic multi-walled carbon nanotube modified composite pencil graphite electrodes. Electrochim Acta 65:257–265

    Article  CAS  Google Scholar 

  16. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670

    Article  CAS  Google Scholar 

  17. Rezaei B, Boroujeni MK, Ensafi AA (2014) A novel electrochemical nanocomposite imprinted sensor for the determination of lorazepam based on modified polypyrrole@sol-gel@gold nanoparticles/pencil graphite electrode. Electrochim Acta 123:332–339

    Article  CAS  Google Scholar 

  18. Erdem A, Eksin E, Muti M (2014) Chitosan–graphene oxide based aptasensor for the impedimetric detection of lysozyme. Colloids Surf B: Biointerfaces 115:205–211

    Article  CAS  Google Scholar 

  19. Yuvaraj AL, Santhanaraj D (2014) A systematic study on electrolytic production of hydrogen gas by using graphite as electrode. Mater Res 17:83–87

    Article  CAS  Google Scholar 

  20. Luo X-L, Xu J-J, Zhang Q, Yang G-J, Chen H-Y (2005) Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosens Bioelectron 21(1):190–196

    Article  CAS  Google Scholar 

  21. Niu L, Li Q, Wei F, Chen X, Wang H (2003) Electrochemical impedance and morphological characterization of platinum-modified polyaniline film electrodes and their electrocatalytic activity for methanol oxidation. J Electroanal Chem 544:121–128

    Article  CAS  Google Scholar 

  22. Niu L, Li Q, Wei F, Wu S, Liu P, Cao X (2005) Electrocatalytic behavior of Pt-modified polyaniline electrode for methanol oxidation: effect of Pt deposition modes. J Electroanal Chem 578:331–337

    Article  CAS  Google Scholar 

  23. Lu X, Qiu Z, Wan Y, Hu Z, Zhao Y (2010) Preparation and characterization of conducting polycaprolactone/chitosan/polypyrrole composites. Compos Part A 41:1516–1523

    Article  Google Scholar 

  24. Xiang C, Li R, Adhikari B, She Z, Li Y, Kraatz H-B (2015) Sensitive electrochemical detection of salmonella with chitosan-gold nanoparticles composite film. Talanta 140:122–127

    Article  CAS  Google Scholar 

  25. Yalçınkaya S (2013) Electrochemical synthesis of poly(o-anisidine)/chitosan composite on platinum and mild steel electrodes. Prog Org Coat 76:181–187

    Article  Google Scholar 

  26. Marroquin JB, Rhee KY, Park SJ (2013) Chitosan nanocomposite films: enhanced electrical conductivity, thermal stability, and mechanical properties. Carbohydr Polym 92(2):1783–1791

    Article  CAS  Google Scholar 

  27. Abdi MM, Kassim A, Ekramul Mahmud HNM, Yunus WMM, Talib ZA, Sadrolhosseini AR (2009) Physical, optical, and electrical properties of a new conducting polymer. J Mater Sci 44:3682–3686

    Article  CAS  Google Scholar 

  28. Li Y, Li G, Peng H, Chen K (2011) Facile synthesis of electroactive polypyrrole–chitosan composite nanospheres with controllable diameters. Polym Inter 60:647–651

    Article  CAS  Google Scholar 

  29. Li Z, Wua Y, Lua G (2016) Highly efficient hydrogen evolution over Co(OH)2 nanoparticles modified g-C3N4 co-sensitized by Eosin Y and Rose Bengal under visible light irradiation. Appl Catal B Environ 188:56–64

    Article  CAS  Google Scholar 

  30. Wang Y, Sun Y, Liao H, Sun S, Li S, Ager JW III, Xu ZJ (2016) Activation effect of electrochemical cycling on gold nanoparticles towards the hydrogen evolution reaction in sulfuric acid. Electrochim Acta 209:440–447

    Article  CAS  Google Scholar 

  31. Zhang M, Wang S, Li T, Chen JD, Zhu H, Du ML (2016) Nitrogen and gold nanoparticles co-doped carbon nanofiber hierarchical structures for efficient hydrogen evolution reactions. Electrochim Acta 208:1–9

    Article  CAS  Google Scholar 

  32. Köleli F, Balun Kayan D (2010) Low overpotential reduction of dinitrogen to ammonia in aqueous media. J Electroanal Chem 638(1):119–122

    Article  Google Scholar 

  33. Balun Kayan D, Köleli F (2016) Simultaneous electrocatalytic reduction of dinitrogen and carbon dioxide on conducting polymer electrodes. Appl Catal B Environ 181:88–93

    Article  Google Scholar 

  34. Aydın R, Öztürk Doğan H, Köleli F (2013) Electrochemical reduction of carbondioxide on polypyrrole coated copper electro-catalyst under ambient and high pressure in methanol. Appl Catal B Environ 140-141:478–482

    Article  Google Scholar 

  35. Çirmi D, Aydın R, Köleli F (2015) The electrochemical reduction of nitrate ion on polypyrrole coated copper electrode. J Electroanal Chem 736:101–106

    Article  Google Scholar 

  36. Łukaszewski M, Soszko M, Czerwiński A (2016) Electrochemical methods of real surface area determination of Noble metal electrodes—an overview. Int J Electrochem Sci 11:4442–4469

    Article  Google Scholar 

  37. Yahya MZA, Arof AK (2004) Conductivity and X-ray photoelectron studies on lithium acetate doped chitosan films. Carbohydr Polym 55:95–100

    Article  CAS  Google Scholar 

  38. Mohamed NS, Subban RHY, Arof AK (1995) Polymer batteries fabricated from lithium complexed acetylated chitosan. J Power Sources 56:153–156

    Article  CAS  Google Scholar 

  39. Gök A, Omastova M, Yavuz AG (2007) Synthesis and characterization of polythiophenes prepared in the presence of surfactants. Synth Met 157:23–29

    Article  Google Scholar 

  40. Köleli F, Balun D (2004) Reduction of CO2 under high pressure and high temperature on Pb-granule electrodes in a fixed-bed reactor in aqueous medium. Appl Catal A:Gen 274:237–242

    Article  Google Scholar 

  41. Lu J, Zhou W, Wang L, Jia J, Ke Y, Yang L, Zhou K, Liu X, Tang Z, Li L, Chen S (2016) Core−Shell nanocomposites based on gold nanoparticle@zinc−iron-embedded porous carbons derived from metal−organic frameworks as efficient dual catalysts for oxygen reduction and hydrogen evolution reactions. ACS Catal 6:1045–1053

    Article  CAS  Google Scholar 

  42. Balun Kayan D, Köleli F (2015) Dinitrogen reduction on a polypyrrole coated. Pt electrode under high-pressure conditions: electrochemical impedance spectroscopy studies Turk J Chem 39(3):648–659

    CAS  Google Scholar 

  43. Torabi M, Sadrnezhaad SK (2010) Electrochemical synthesis of flake-like Fe/MWCNTs nanocomposite for hydrogen evolution reaction: effect of the CNTs on dendrite growth of iron and its electrocatalytic activity. Currt Appl Physics 10:72–76

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from The Scientific and Technological Research Council of Turkey (TÜBİTAK) (Project Number TBAG-114Z315), Scientific Research Projects Coordination Unit of Aksaray University (2015-036) and Science and Technological Application and Research Center of Aksaray University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didem Balun Kayan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balun Kayan, D., Koçak, D. Enhanced catalytic activity of ppy-coated pencil electrode in the presence of chitosan and Au nanoparticles for hydrogen evolution reaction. J Solid State Electrochem 21, 2791–2798 (2017). https://doi.org/10.1007/s10008-017-3605-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3605-4

Keywords

Navigation