Skip to main content
Log in

Electrode kinetics at the Pt, O2|La0.9Sr0.1ScO3-δ interface

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Most of the ceramic proton conductors reveal considerable hole conductivity in an oxidizing ambient. This results in a necessity of taking into account the nonfaradaic current when studying the electrode kinetics in electrochemical cells with high-temperature protonic electrolytes. The present paper is an attempt to elucidate the electrode kinetics of oxygen reaction at a Pt, O2|La0.9Sr0.1ScO3-δ (LSS10) interface. The polarization conductivity has been determined as a function of temperature (600–900 °C) and oxygen partial pressure (2.1 × 104 > pO2 > 1 Pa) by means of impedance spectroscopy using the elementary model in terms of an equivalent electrical circuit with the bypass resistance of hole transport in the electrolyte. Possible routes of oxygen reaction at the Pt, O2|La0.9Sr0.1ScO3-δ interface have been discussed, and diffusion of the electron holes in LSS10 was proposed as the rate-determining stage of the electrode process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Stroeva AY, Gorelov VP (2012) Solid proton conducting electrolytes based on LaScO3. Russ J Electrochem 48:949–960

    Article  Google Scholar 

  2. Nomura K, Tanase S (1997) Electrical conduction behavior in (La0.9Sr0.1)MIIIO3-δ (MIII = Al, Ga, Sc, In, and Lu) perovskites. Solid State Ionics 98:229–236

    Article  CAS  Google Scholar 

  3. Stroeva AY, Gorelov VP, Kuz’min AV, Antonova EP, Plaksin SV (2012) Phase composition and conductivity of La1-xSrxScO3-δ (x = 0.01-0.20) under oxidative conditions. Russ J Electrochem 48:509–517

    Article  CAS  Google Scholar 

  4. Uchida H, Tanaka S, Iwahara H (1985) Polarization at Pt electrodes of a fuel cell with a high temperature-type proton conductive solid electrolyte. J Appl Electrochem 15:93–97

    Article  CAS  Google Scholar 

  5. Akoshima S, Oishi M, Yashiro K, Sato K, Mizusaki J (2010) Reaction kinetics on platinum electrode / yttrium-doped barium cerate interface under H2–H2O atmosphere. Solid State Ionics 181:240–248

    Article  CAS  Google Scholar 

  6. Sakai T, Arakawa K, Ogushi M, Ishihara T, Matsumoto H, Okuyama Y (2015) Atmosphere dependence of anode reaction of intermediate temperature steam electrolysis using perovskite type proton conductor. Solid State Electrochem 19:1793–1798

    Article  CAS  Google Scholar 

  7. Zhang C, Zhao H (2011) A novel cathode material BaCe0.4Sm0.2Co0.4O3−δ for proton conducting solid oxide fuel cell. Electrochem Commun 13:1070–1073

    Article  CAS  Google Scholar 

  8. Zhao L, He B, Gu J, Liu F, Chu X, Xia C (2012) Reaction model for cathodes cooperated with oxygen-ion conductors for solid oxide fuel cells using proton-conducting electrolytes. Int J Hydrog Energy 37:548–554

    Article  CAS  Google Scholar 

  9. Liu M, Hu H (1996) Effect of interfacial resistance on determination of transport properties of mixed-conducting electrolytes. J Electrochem Soc 143:L109–L112

    Article  CAS  Google Scholar 

  10. Hu H, Liu M (1997) Interfacial polarization characteristics of Pt|BaCe0.8Gd0.2O3|Pt cells at intermediate temperatures. J Electrochem Soc 144:3561–3567

    Article  CAS  Google Scholar 

  11. Lai W, Haile SM (2005) Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: a case study of ceria. J Am Ceram Soc 88:2979–2997

    Article  CAS  Google Scholar 

  12. Lai W, Haile SM (2008) Electrochemical impedance spectroscopy of mixed conductors under a chemical potential gradient: a case study of Pt|SDC|BSCF. Phys Chem Chem Phys 10:865–883

    Article  CAS  Google Scholar 

  13. Poetzsch D, Merkle R, Maier J (2013) Investigation of oxygen exchange kinetics in proton-conducting ceramic fuel cells: effect of electronic leakage current using symmetric cells. J Power Sources 242:784–789

    Article  CAS  Google Scholar 

  14. Antonova EP, Bronin DI, Stroeva AY (2014) Polarization resistance of platinum electrodes in contact with proton-conducting La0.9Sr0.1ScO3–δ. Russ J Electrochem 50:613–616

    Article  CAS  Google Scholar 

  15. Strandbakke R (2014) Oxygen electrodes for ceramic fuel cells with proton and oxide ion conducting electrolytes. PhD Thesis. University of Oslo

  16. Strandbakke R, Cherepanov VA, Zuev AY, Tsvetkov DS, Argirusis C, Sourkouni G, Prünte S, Norby T (2015) Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics 278:120–132

    Article  CAS  Google Scholar 

  17. Schwandt C, Weppner W (1997) Kinetics of oxygen, platinum/stabilized zirconia and oxygen, gold/stabilized zirconia electrodes under equilibrium conditions. J Electrochem Soc 144:3728–3738

    Article  Google Scholar 

  18. Okamoto H, Kawamura G, Kudo T (1983) Study of oxygen adsorption on platinum through observation of exchange current in a solid electrolyte concentration cell. Electrochim Acta 28:379–382

    Article  CAS  Google Scholar 

  19. Kim JH, Yoo HI (2001) Partial electronic conductivity and electrolytic domain of La0.9Sr0.1Ga0.8Mg0.2O3-δ. Solid State Ionics 140:105–113

    Article  CAS  Google Scholar 

  20. Vdovin GK, Kurumchin EK, Isaeva EV, Bronin DI (2001) Isotopic exchange and oxygen diffusion in the La0.88Sr0.12Ga0.82Mg0.18O3-δ-molecular oxygen system. Russ J Electrochem 37:304–307

    Article  CAS  Google Scholar 

  21. Bronin DI, Yaroslavtsev IY, Näfe H, Aldinger F (2004) Identification of the reaction mechanism of the Pt, O2/La(Sr)Ga(Mg)O3–δ electrode system. Electrochim Acta 49:2435–2441

    Article  CAS  Google Scholar 

  22. Boukamp BA (2000) Small signal response of the BiCuVOx / nobel metal / oxygen electrode system. Solid State Ionics 136-137:75–82

    Article  CAS  Google Scholar 

  23. Stroeva AY, Gorelov VP (2012) Nature of conductivity of perovskites La1-xSrxScO3-δ (x = 0.01-0.15) under oxidative and reducing conditions. Russ J Electrochem 48:1079–1085

    Article  CAS  Google Scholar 

  24. Norby T, Wideroe M, Glockner R, Larring Y (2004) Hydrogen in oxides. Dalton Trans 19:3012–3018

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to A.Yu. Stroeva for providing the samples for the experiments and to V.P. Gorelov for his helpful comments during the work on this paper.

The study was financially supported by the grant of the Russian Science Foundation, project no. 16-13-00053, and by Act 211 Government of the Russian Federation (agreement no. 02.A03.21.0006) using facilities of shared access center “Composition of Compounds” of IHTE UB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Antonova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonova, E.P., Bronin, D.I. Electrode kinetics at the Pt, O2|La0.9Sr0.1ScO3-δ interface. J Solid State Electrochem 21, 2457–2462 (2017). https://doi.org/10.1007/s10008-017-3593-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3593-4

Keywords

Navigation