Aprotic metal-oxygen batteries: recent findings and insights

Abstract

During the last two decades, we have observed a dramatic increase in the electrification of many technologies. What has enabled this transition to take place was the commercialization of Li-ion batteries in the early nineties. Mobile technologies such as cellular phones, laptops, and medical devices make these batteries crucial for our contemporary lifestyle. Like any other electrochemical cell, the Li-ion batteries are restricted to the thermodynamic limitations of the materials. It might be that the energy density of the most advance Li-ion battery is still too low for demanding technologies such as a full electric vehicle. To really convince future customers to switch from the internal combustion engine, new batteries and chemistry need to be developed. Non-aqueous metal-oxygen batteries—such as lithium–oxygen, sodium–oxygen, magnesium–oxygen, and potassium–oxygen—offer high capacity and high operation voltages. Also, by using suitable polar aprotic solvents, the oxygen reduction process that occurs during discharge can be reversed by applying an external potential during the charge process. Thus, in theory, these batteries could be electrically recharged a number of times. However, there are many scientific and technical challenges that need to be addressed. The current review highlights recent scientific insights related to these promising batteries. Nevertheless, the reader will note that many conclusions are applicable in other kinds of batteries as well.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Abraham K, Jiang Z (1996) A polymer electrolyte based rechargeable lithium/oxygen battery. J Electrochem Soc 143:1–5

    CAS  Article  Google Scholar 

  2. 2.

    Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium−air battery: promise and challenges. J Phys Chem Lett 1:2193–2203

    CAS  Article  Google Scholar 

  3. 3.

    Kraytsberg A, Ein-Eli Y (2011) Review on li-air batteries—opportunities, limitations and perspective. J Power Sources 196:886–893

    CAS  Article  Google Scholar 

  4. 4.

    Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2012) A critical review of li∕air batteries. J Electrochem Soc 159:R1–R30

    CAS  Article  Google Scholar 

  5. 5.

    Wang Z-L, Xu D, Xu J-J, Zhang X-B (2014) Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev 43:7746–7786

    CAS  Article  Google Scholar 

  6. 6.

    Capsoni D, Bini M, Ferrari S, Quartarone E, Mustarelli P (2012) Recent advances in the development of Li-air batteries. J Power Sources 220:253–263

    CAS  Article  Google Scholar 

  7. 7.

    Sharon D, Etacheri V, Garsuch A, Afri M, Frimer AA, Aurbach D (2013) On the challenge of electrolyte solutions for Li-air batteries: monitoring oxygen reduction and related reactions in polyether solutions by spectroscopy and EQCM. J Phys Chem Lett 4:127–131

    CAS  Article  Google Scholar 

  8. 8.

    Freunberger SA, Chen Y, Drewett NE, Hardwick LJ, Bardé F, Bruce PG (2011) The lithium-oxygen battery with ether-based electrolytes. Angew Chem Int Ed Engl 50:8609–8613

    CAS  Article  Google Scholar 

  9. 9.

    Sharon D, Hirshberg D, Afri M, Frimer AA, Aurbach D (2017) The importance of solvent selection in Li–O2 cells. Chem Commun 53:3269–3272

    CAS  Article  Google Scholar 

  10. 10.

    Kwabi DG, Batcho TP, Amanchukwu CV, Ortiz-Vitoriano N, Hammond P, Thompson CV, Shao-Horn Y (2014) Chemical instability of dimethyl sulfoxide in lithium–air batteries. J Phys Chem Lett 5:2850–2856

    CAS  Article  Google Scholar 

  11. 11.

    Trahan MJ, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2012) Studies of li-air cells utilizing dimethyl sulfoxide-based electrolyte. J Electrochem Soc 160:A259–A267

    Article  CAS  Google Scholar 

  12. 12.

    Sharon D, Afri M, Noked M, Garsuch A, Frimer AA, Aurbach D (2013) Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen. J Phys Chem Lett 4:3115–3119

    CAS  Article  Google Scholar 

  13. 13.

    Sharon D, Hirsberg D, Afri M, Garsuch A, Frimer AA, Aurbach D (2014) Reactivity of amide based solutions in lithium–oxygen cells. J Phys Chem C 118:15207–15213

    CAS  Article  Google Scholar 

  14. 14.

    Ottakam Thotiyl MM, Freunberger SA, Peng Z, Bruce PG (2013) The carbon electrode in nonaqueous Li-O2 cells. J Am Chem Soc 135:494–500

    CAS  Article  Google Scholar 

  15. 15.

    McCloskey BD, Speidel A, Scheffler R, Miller DC, Viswanathan V, Hummelshøj JS, Nørskov JK, Luntz AC (2012) Twin problems of interfacial carbonate formation in nonaqueous li–O 2 batteries. J Phys Chem Lett 3:997–1001

    CAS  Article  Google Scholar 

  16. 16.

    Peng Z, Freunberger SA, Chen Y, Bruce PG (2012) A reversible and higher-rate Li-O2 battery. Science 337:563–566

    CAS  Article  Google Scholar 

  17. 17.

    Ottakam Thotiyl MM, Freunberger SA, Peng Z, Chen Y, Liu Z, Bruce PG (2013) A stable cathode for the aprotic Li-O2 battery. Nat Mater 12:1050–1056

    CAS  Article  Google Scholar 

  18. 18.

    Johnson L, Li C, Liu Z, Chen Y, Freunberger SA, Tarascon J-M, Ashok PC, Praveen BB, Dholakia K, Bruce PG (2014) The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat Chem 6:1091–1099

    CAS  Article  Google Scholar 

  19. 19.

    Schroeder MA, Kumar N, Pearse AJ, Liu C, Lee SB, Rubloff GW, Leung K, Noked M (2015) DMSO–Li2O2 interface in the rechargeable Li–O2 battery cathode: theoretical and experimental perspectives on stability. ACS Appl Mater Interfaces 7:11402–11411

    CAS  Article  Google Scholar 

  20. 20.

    Schwenke KU, Metzger M, Restle T, Piana M, Gasteiger H a. (2015) The influence of water and protons on Li2O2 crystal growth in aprotic Li-O2 cells. J Electrochem Soc 162:A573–A584

    CAS  Article  Google Scholar 

  21. 21.

    Aetukuri NB, McCloskey BD, García JM, Krupp LE, Viswanathan V, Luntz AC (2014) Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat Chem 7:50–56

    Article  CAS  Google Scholar 

  22. 22.

    Liu T, Leskes M, Yu W, Moore AJ, Zhou L, Bayley PM, Kim G, Grey CP (2015) Cycling Li-O2 batteries via LiOH formation and decomposition. Science (80- ) 350:530–533

    CAS  Article  Google Scholar 

  23. 23.

    Liu T, Kim G, Carretero-Gonzalez J, Castillo-Martinez E, Grey CP (2016) Response to comment on “cycling Li-O2 batteries via LiOH formation and decomposition.”. Science (80- ) 352:667–667

    Article  CAS  Google Scholar 

  24. 24.

    McCloskey BD, Addison D (2017) A viewpoint on heterogeneous Electrocatalysis and redox mediation in Nonaqueous Li-O2 batteries. ACS Catal 7:772–778

    CAS  Article  Google Scholar 

  25. 25.

    Gunasekara I, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2015) A study of the influence of lithium salt anions on oxygen reduction reactions in Li-air batteries. J Electrochem Soc 162:A1055–A1066

    CAS  Article  Google Scholar 

  26. 26.

    Burke CM, Pande V, Khetan A, Viswanathan V, McCloskey BD (2015) Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity. Proc Natl Acad Sci 112:9293–9298

    CAS  Article  Google Scholar 

  27. 27.

    Sharon D, Hirsberg D, Salama M, Afri M, Frimer AA, Noked M, Kwak W-J, Sun Y-K, Aurbach D (2016) Mechanistic role of Li + dissociation level in aprotic Li–O 2 battery. ACS Appl Mater Interfaces 8:5300–5307

    CAS  Article  Google Scholar 

  28. 28.

    Liu R, Lei Y, Yu W, Wang H, Qin L, Han D, Yang W, Zhou D, He Y, Zhai D, Li B, Kang F (2017) Achieving low overpotential lithium–oxygen batteries by exploiting a new electrolyte based on N, N ′-dimethylpropyleneurea. ACS Energy Lett 2:313–318

    CAS  Article  Google Scholar 

  29. 29.

    Schroeder MA, Pearse AJ, Kozen AC, Chen X, Gregorczyk K, Han X, Cao A, Hu L, Lee SB, Rubloff GW, Noked M (2015) An investigation of the cathode-catalyst-electrolyte interface in aprotic Li-O2 batteries. Chem Mater 27:5305–5313

    CAS  Article  Google Scholar 

  30. 30.

    Oh SH, Nazar LF (2012) Oxide catalysts for rechargeable high-capacity Li-O2 batteries. Adv Energy Mater 2:903–910

    CAS  Article  Google Scholar 

  31. 31.

    Jian Z, Liu P, Li F, He P, Guo X, Chen M, Zhou H (2014) Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew Chemie - Int Ed 53:442–446

    CAS  Article  Google Scholar 

  32. 32.

    Lu Y-C, Xu Z, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J Am Chem Soc 132:12170–12171

    CAS  Article  Google Scholar 

  33. 33.

    Sharon D, Hirsberg D, Afri M, Chesneau F, Lavi R, Frimer AA, Sun Y-K, Aurbach D (2015) Catalytic behavior of lithium nitrate in Li-O 2 cells. ACS Appl Mater Interfaces 7:16590–16600

    CAS  Article  Google Scholar 

  34. 34.

    Lim H-D, Lee B, Zheng Y, Hong J, Kim J, Gwon H, Ko Y, Lee M, Cho K, Kang K (2016) Rational design of redox mediators for advanced Li–O2 batteries. Nat Energy 1:16066

    CAS  Article  Google Scholar 

  35. 35.

    Bergner BJ, Schürmann A, Peppler K, Garsuch A, Janek J (2014) TEMPO: a mobile catalyst for rechargeable Li-O 2 batteries. J Am Chem Soc 136:15054–15064

    CAS  Article  Google Scholar 

  36. 36.

    Kwak W-J, Hirshberg D, Sharon D, Afri M, Frimer AA, Jung H-G, Aurbach D, Sun Y-K (2016) Li–O 2 cells with LiBr as an electrolyte and a redox mediator. Energy Environ Sci 9:2334–2345

    CAS  Article  Google Scholar 

  37. 37.

    Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG (2013) Charging a Li-O2 battery using a redox mediator. Nat Chem 5:489–494

    Article  CAS  Google Scholar 

  38. 38.

    Gao X, Chen Y, Johnson L, Bruce PG (2016) Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions. Nat Mater 15:882–888

    CAS  Article  Google Scholar 

  39. 39.

    Younesi R, Hahlin M, Roberts M, Edström K (2013) The SEI layer formed on lithium metal in the presence of oxygen: a seldom considered component in the development of the Li-O2 battery. J Power Sources 225:40–45

    CAS  Article  Google Scholar 

  40. 40.

    Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1:16013

    CAS  Article  Google Scholar 

  41. 41.

    Wood KN, Noked M, Dasgupta NP (2017) Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior. ACS Energy Lett 2:664–672

    CAS  Article  Google Scholar 

  42. 42.

    Assary RS, Lu J, Du P, Luo X, Zhang X, Ren Y, Curtiss LA, Amine K (2013) The effect of oxygen crossover on the anode of a li-O2 battery using an ether-based solvent: insights from experimental and computational studies. ChemSusChem 6:51–55

    CAS  Article  Google Scholar 

  43. 43.

    Uddin J, Bryantsev VS, Giordani V, Walker W, Chase GV, Addison D (2013) Lithium nitrate as regenerable SEI stabilizing agent for rechargeable Li/O2 batteries. J Phys Chem Lett 4:3760–3765

    CAS  Article  Google Scholar 

  44. 44.

    Aleshin GY, Semenenko DA, Belova AI, Zakharchenko TK, Itkis DM, Goodilin EA, Tretyakov YD (2011) Protected anodes for lithium-air batteries. Solid State Ionics 184:62–64

    CAS  Article  Google Scholar 

  45. 45.

    Walker W, Giordani V, Uddin J, Bryantsev VS, Chase GV, Addison D (2013) A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J Am Chem Soc 135:2076–2079

    CAS  Article  Google Scholar 

  46. 46.

    Sun B, Huang X, Chen S, Zhang J, Wang G (2014) An optimized LiNO3/DMSO electrolyte for high-performance rechargeable Li–O2 batteries. RSC Adv 4:11115–11120

    CAS  Article  Google Scholar 

  47. 47.

    Kazyak E, Wood KN, Dasgupta NP (2015) Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem Mater 27:6457–6462

    CAS  Article  Google Scholar 

  48. 48.

    Noked M, Schroeder MA, Pearse AJ, Rubloff GW, Lee SB (2016) Protocols for evaluating and reporting Li–O 2 cell performance. J Phys Chem Lett 7:211–215

    CAS  Article  Google Scholar 

  49. 49.

    Papp JK, Forster JD, Burke CM, Kim HW, Luntz AC, Shelby RM, Urban JJ, McCloskey BD (2017) Poly(vinylidene fluoride) (PVDF) binder degradation in li–O 2 batteries: a consideration for the characterization of lithium superoxide. J Phys Chem Lett 8:1169–1174

    CAS  Article  Google Scholar 

  50. 50.

    Kwak W-J, Hirshberg D, Sharon D, Shin H-J, Afri M, Park J-B, Garsuch A, Chesneau FF, Frimer AA, Aurbach D, Sun Y-K (2015) Understanding the behavior of Li–oxygen cells containing LiI. J Mater Chem A 3:8855–8864

    CAS  Article  Google Scholar 

  51. 51.

    Burke CM, Black R, Kochetkov IR, Giordani V, Addison D, Nazar LF, McCloskey BD (2016) Implications of 4 e—oxygen reduction via iodide redox mediation in Li–O 2 batteries. ACS Energy Lett 1:747–756

    CAS  Article  Google Scholar 

  52. 52.

    Zhao Q, Lu Y, Zhu Z, Tao Z, Chen J (2015) Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode. Nano Lett 15:5982–5987

    CAS  Article  Google Scholar 

  53. 53.

    Lu J, Jung Lee Y, Luo X, Chun Lau K, Asadi M, Wang H-H, Brombosz S, Wen J, Zhai D, Chen Z, Miller DJ, Sub Jeong Y, Park J-B, Zak Fang Z, Kumar B, Salehi-Khojin A, Amine K (2016) A lithium–oxygen battery based on lithium superoxide. Nature 1–7.

  54. 54.

    Peled E, Golodnitsky D, Mazor H, Goor M, Avshalomov S (2011) Parameter analysis of a practical lithium- and sodium-air electric vehicle battery. J Power Sources 196:6835–6840

    CAS  Article  Google Scholar 

  55. 55.

    Bender CL, Hartmann P, Vračar M, Adelhelm P, Janek J (2014) On the thermodynamics, the role of the carbon cathode, and the cycle life of the sodium superoxide (NaO2) battery. Adv Energy Mater 4:1–10

    Article  CAS  Google Scholar 

  56. 56.

    Kang S, Mo Y, Ong SP, Ceder G (2014) Nanoscale stabilization of sodium oxides: Implications for Na-O2 batteries. Nano Lett 14:1016–1020

    CAS  Article  Google Scholar 

  57. 57.

    Wang B, Zhao N, Wang Y, Zhang W, Lu W, Guo X, Liu J (2017) Electrolyte-controlled discharge product distribution of Na–O 2 batteries: a combined computational and experimental study. Phys Chem Chem Phys 19:2940–2949

    CAS  Article  Google Scholar 

  58. 58.

    Bender CL, Schröder D, Pinedo R, Adelhelm P, Janek J (2016) One- or two-electron transfer? The ambiguous nature of the discharge products in sodium-oxygen batteries. Angew Chemie - Int Ed 55:4640–4649

    CAS  Article  Google Scholar 

  59. 59.

    Zhao N, Li C, Guo X (2014) Long-life Na–O2 batteries with high energy efficiency enabled by electrochemically splitting NaO2 at a low overpotential. Phys Chem Chem Phys 16:15646

    CAS  Article  Google Scholar 

  60. 60.

    Ortiz-Vitoriano N, Batcho TP, Kwabi DG, Han B, Pour N, Yao KPC, Thompson CV, Shao-Horn Y (2015) Rate-dependent nucleation and growth of NaO2 in Na-O2 batteries. J Phys Chem Lett 6:2636–2643

    CAS  Article  Google Scholar 

  61. 61.

    Pinedo R, Weber DA, Bergner B, Schröder D, Adelhelm P, Janek J (2016) Insights into the chemical nature and formation mechanisms of discharge products in Na-O2 batteries by means of operando X-ray diffraction. J Phys Chem C 120:8472–8481

    CAS  Article  Google Scholar 

  62. 62.

    Liu WM, Yin WW, Ding F, Sang L, Fu ZW (2014) NiCo2O4 nanosheets supported on Ni foam for rechargeable nonaqueous sodium-air batteries. Electrochem Commun 45:87–90

    Article  CAS  Google Scholar 

  63. 63.

    Yin W-W, Fu Z-W (2017) A highly efficient bifunctional heterogeneous catalyst for morphological control of discharged products in Na–air batteries. Chem Commun 53:1522–1525

    CAS  Article  Google Scholar 

  64. 64.

    Hartmann P, Bender CL, Vračar M, Dürr AK, Garsuch A, Janek J, Adelhelm P (2012) A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 12:228–232

    Article  CAS  Google Scholar 

  65. 65.

    Arcelus O, Li C, Rojo T, Carrasco J (2015) Electronic structure of sodium superoxide bulk, (100) surface, and clusters using hybrid density functional: relevance for Na-O2 batteries. J Phys Chem Lett 6:2027–2031

    CAS  Article  Google Scholar 

  66. 66.

    McCloskey BD, Garcia JM, Luntz AC (2014) Chemical and electrochemical differences in nonaqueous li–O 2 and Na–O 2 batteries. J Phys Chem Lett 5:1230–1235

    CAS  Article  Google Scholar 

  67. 67.

    Zhao N, Guo X (2015) Cell chemistry of sodium-oxygen batteries with various nonaqueous electrolytes. J Phys Chem C 119:25319–25326

    CAS  Article  Google Scholar 

  68. 68.

    Sun Q, Yadegari H, Banis MN, Liu J, Xiao B, Li X, Langford C, Li R, Sun X (2015) Toward a sodium-“air” battery: revealing the critical role of humidity. J Phys Chem C 119:13433–13441

    CAS  Article  Google Scholar 

  69. 69.

    Xia C, Black R, Fernandes R, Adams B, Nazar LF (2015) The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat Chem 7:496–501

    CAS  Article  Google Scholar 

  70. 70.

    Liu T, Kim G, Casford MTL, Grey CP (2016) Mechanistic insights into the challenges of cycling a nonaqueous Na–O 2 battery. J Phys Chem Lett 7:4841–4846

    CAS  Article  Google Scholar 

  71. 71.

    Landa-Medrano I, Pinedo R, Bi X, Ruiz De Larramendi I, Lezama L, Janek J, Amine K, Lu J, Rojo T (2016) New insights into the instability of discharge products in Na-O2 batteries. ACS Appl Mater Interfaces 8:20120–20127

    CAS  Article  Google Scholar 

  72. 72.

    Nichols JE, McCloskey BD (2017) The sudden death phenomena in nonaqueous Na–O 2 batteries. J Phys Chem C 121:85–96

    CAS  Article  Google Scholar 

  73. 73.

    Hartmann P, Heinemann M, Bender CL, Graf K, Baumann RP, Adelhelm P, Heiliger C, Janek J (2015) Discharge and charge reaction paths in sodium-oxygen batteries: does NaO2 form by direct electrochemical growth or by precipitation from solution? J Phys Chem C 119:22778–22786

    CAS  Article  Google Scholar 

  74. 74.

    Lutz L, Yin W, Grimaud A, Alves Dalla Corte D, Tang M, Johnson L, Azaceta E, Sarou-Kanian V, Naylor AJ, Hamad S, Anta JA, Salager E, Tena-Zaera R, Bruce PG, Tarascon J-M (2016) High capacity Na–O 2 batteries: key parameters for solution-mediated discharge. J Phys Chem C 120:20068–20076

    CAS  Article  Google Scholar 

  75. 75.

    Abate II, Thompson LE, Kim HC, Aetukuri NB (2016) Robust NaO2 electrochemistry in aprotic Na-O2 batteries employing ethereal electrolytes with a protic additive. J Phys Chem Lett 7:2164–2169

    CAS  Article  Google Scholar 

  76. 76.

    Seh ZW, Sun J, Sun Y, Cui Y (2015) A highly reversible room-temperature sodium metal anode. ACS Cent Sci 1:449–455

    CAS  Article  Google Scholar 

  77. 77.

    Luo W, Lin C-F, Zhao O, Noked M, Zhang Y, Rubloff GW, Hu L (2017) Ultrathin surface coating enables the stable sodium metal anode. Adv Energy Mater 7:1601526

    Article  CAS  Google Scholar 

  78. 78.

    Wenzel S, Leichtweiss T, Weber DA, Sann J, Zeier WG, Janek J (2016) Interfacial reactivity benchmarking of the sodium ion conductors Na3PS4 and sodium ??-alumina for protected sodium metal anodes and sodium all-solid-state batteries. ACS Appl Mater Interfaces 8:28216–28224

    CAS  Article  Google Scholar 

  79. 79.

    Ren X, Wu Y (2013) A low-overpotential potassium-oxygen battery based on potassium superoxide. J Am Chem Soc 135:2923–2926

    CAS  Article  Google Scholar 

  80. 80.

    Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson M a. (2009) Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J Phys Chem C 113:20127–20134

    CAS  Article  Google Scholar 

  81. 81.

    Xiao N, Ren X, He M, McCulloch WD, Wu Y (2017) Probing mechanisms for inverse correlation between rate performance and capacity in K–O 2 batteries. ACS Appl Mater Interfaces 9:4301–4308

    CAS  Article  Google Scholar 

  82. 82.

    Schwenke KU, Meini S, Wu X, Gasteiger HA, Piana M (2013) Stability of superoxide radicals in glyme solvents for non-aqueous Li-O2 battery electrolytes. Phys Chem Chem Phys 15:11830–11839

    CAS  Article  Google Scholar 

  83. 83.

    Schwenke KU, Herranz J, Gasteiger HA, Piana M (2015) Reactivity of the ionic liquid Pyr14TFSI with superoxide radicals generated from KO2 or by contact of O2 with Li7Ti5O12. J Electrochem Soc 162:A905–A914

    CAS  Article  Google Scholar 

  84. 84.

    Ren X, Lau KC, Yu M, Bi X, Kreidler E, Curtiss LA, Wu Y (2014) Understanding side reactions in K–O 2 batteries for improved cycle life. ACS Appl Mater Interfaces 6:19299–19307

    CAS  Article  Google Scholar 

  85. 85.

    Ren X, He M, Xiao N, McCulloch WD, Wu Y (2017) Greatly enhanced anode stability in K-oxygen batteries with an in situ formed solvent- and oxygen-impermeable protection layer. Adv Energy Mater 7:1601080

    Google Scholar 

  86. 86.

    Eftekhari A, Jian Z, Ji X (2017) Potassium secondary batteries. ACS Appl Mater Interfaces 9:4404–4419

    CAS  Article  Google Scholar 

  87. 87.

    McCulloch WD, Ren X, Yu M, Huang Z, Wu Y (2015) Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl Mater Interfaces 7:26158–26166

    CAS  Article  Google Scholar 

  88. 88.

    Xing Z, Qi Y, Jian Z, Ji X (2017) Polynanocrystalline graphite: a new carbon anode with superior cycling performance for K-ion batteries. ACS Appl Mater Interfaces 9:4343–4351

    CAS  Article  Google Scholar 

  89. 89.

    Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114:11683–11720

    CAS  Article  Google Scholar 

  90. 90.

    Vardar G, Nelson EG, Smith JG, Naruse J, Hiramatsu H, Bartlett BM, Sleightholme AES, Siegel DJ, Monroe CW (2015) Identifying the discharge product and reaction pathway for a secondary mg/O2 battery. Chem Mater 27:7564–7568

    CAS  Article  Google Scholar 

  91. 91.

    Esch TR, Bredow T (2016) Bulk and surface properties of magnesium peroxide MgO2. Appl Surf Sci 389:1202–1207

    CAS  Article  Google Scholar 

  92. 92.

    Vardar G, Smith JG, Thompson T, Inagaki K, Naruse J, Hiramatsu H, Sleightholme AES, Sakamoto J, Siegel DJ, Monroe CW (2016) Mg/O2 battery based on the magnesium-aluminum chloride complex (MACC) electrolyte. Chem Mater 28:7629–7637

    CAS  Article  Google Scholar 

  93. 93.

    Shiga T, Hase Y, Yagi Y, Takahashi N, Takechi K (2014) Catalytic cycle employing a TEMPO—anion complex to obtain a secondary mg- O2 battery. J Phys Chem Lett 5:1648–1652

    CAS  Article  Google Scholar 

  94. 94.

    Dong Q, Yao X, Luo J, Zhang X, Hwang H, Wang D (2016) Enabling rechargeable non-aqueous Mg–O 2 battery operations with dual redox mediators †. Chem Commun 52:10–13

    Google Scholar 

  95. 95.

    Shiga T, Hase Y, Kato Y, Inoue M, Takechi K (2013) A rechargeable non-aqueous Mg–O2 battery. Chem Commun 49:9152

    CAS  Article  Google Scholar 

  96. 96.

    Hirshberg D, Sharon D, De La Llave E, Afri M, Frimer AA, Kwak W-J, Sun Y-K, Aurbach D (2017) Feasibility of full (Li-ion)–O 2 cells comprised of hard carbon anodes. ACS Appl Mater Interfaces 9:4352–4361

    CAS  Article  Google Scholar 

  97. 97.

    Hassoun J, Jung HG, Lee DJ, Park JB, Amine K, Sun YK, Scrosati B (2012) A metal-free, lithium-ion oxygen battery: a step forward to safety in lithium-air batteries. Nano Lett 12:5775–5779

    CAS  Article  Google Scholar 

  98. 98.

    Wang H, Rus E, Sakuraba T, Kikuchi J, Kiya Y, Abruña HD (2014) CO2 and O2 evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study. Anal Chem 86:6197–6201

    CAS  Article  Google Scholar 

  99. 99.

    Hy S, Felix F, Rick J, Su W-N, Hwang BJ (2014) Direct in situ observation of Li 2 O evolution on Li-rich high-capacity cathode material, Li[Ni x Li (1–2 x )/3 Mn (2– x )/3 ]O 2 (0 ≤ x ≤0.5). J Am Chem Soc 136:999–1007

    CAS  Article  Google Scholar 

  100. 100.

    Sathiya M, Rousse G, Ramesha K, Laisa CP, Vezin H, Sougrati MT, Doublet M-L, Foix D, Gonbeau D, Walker W, Prakash AS, Ben Hassine M, Dupont L, Tarascon J-M (2013) Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater 12:827–835

    CAS  Article  Google Scholar 

  101. 101.

    Sathiya M, Leriche J-B, Salager E, Gourier D, Tarascon J-M, Vezin H (2015) Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat Commun 6:6276–6282

    CAS  Article  Google Scholar 

  102. 102.

    Lu Y-C, Crumlin EJ, Veith GM, Harding JR, Mutoro E, Baggetto L, Dudney NJ, Liu Z, Shao-Horn Y (2012) In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions. Sci Rep 2:715

    Google Scholar 

  103. 103.

    Peng Z, Freunberger SA, Hardwick LJ, Chen Y, Giordani V, Bardé F, Novák P, Graham D, Tarascon J-M, Bruce PG (2011) Oxygen reactions in a non-aqueous Li+ electrolyte. Angew Chem Int Ed Engl 50:6351–6355

    CAS  Article  Google Scholar 

  104. 104.

    Gittleson FS, Ryu W, Taylor AD (2014) Operando observation of the gold–electrolyte Interface in Li–O 2 batteries. ACS Appl Mater Interfaces 6:19017–19025

    CAS  Article  Google Scholar 

  105. 105.

    Mozhzhukhina N, Méndez De Leo LP, Calvo EJ (2013) Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li–air battery. J Phys Chem C 117:18375–18380

    CAS  Article  Google Scholar 

  106. 106.

    Torres WR, Tesio AY, Calvo EJ (2014) Solvent co-deposition during oxygen reduction on Au in DMSO LiPF6. Electrochem Commun 49:38–41

    CAS  Article  Google Scholar 

Download references

Acknowledgements

A.A.F. thanks the Israel Science Foundation (ISF; Grant No. 1469/13) as well as the Ethel and David Resnick Chair in Active Oxygen Chemistry for their kind and generous support. A partial support for this study was also obtained by the INREP project, financed by the Israeli Committee of High Education. D.S and M.N contributed equally to the review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Doron Aurbach.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharon, D., Hirshberg, D., Afri, M. et al. Aprotic metal-oxygen batteries: recent findings and insights. J Solid State Electrochem 21, 1861–1878 (2017). https://doi.org/10.1007/s10008-017-3590-7

Download citation

Keywords

  • Oxygen reduction
  • Metal–oxygen batteries
  • Non-aqueous electrolyte solutions
  • Li–O2 cells
  • Na–O2 cells