Skip to main content
Log in

TiO2@SnO2@TiO2 triple-shell nanotube anode for high-performance lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

TiO2@SnO2@TiO2 triple-shell nanotubes are fabricated using electrospun polyacrylonitrile (PAN) nanofiber template and plasma-enhanced atomic layer deposition (PEALD). The triple-shell nanotubes have a uniform diameter of ~200 nm, and the thickness of each shell is ~10 nm. The triple-shell nanotube electrode exhibits high reversible capacity of 550 mA g−1 after 60 cycles at the current density of 50 mA g−1, stable cyclability, and high-rate performance (296 mA g−1 at high current density of 5 A g−1) as an anode for lithium-ion batteries. The excellent electrochemical properties are attributed to the structural robustness of the triple-shell nanotubes against pulverization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kaskhedikar NA, Maier J (2009) Adv Mater 21:2664–2680

    Article  CAS  Google Scholar 

  2. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Energy Environ Sci 4:3243–3262

  3. Deng D, Kim MG, Lee JY, Cho J (2009) Energy Environ Sci 2:818–837

  4. Han H, Song T, Lee EK, Devadoss A, Jeon Y, Ha J, Chung YC, Choi YM, Jung YG, Paik U (2012) ACS Nano 6:8308–8315

  5. Yang X, Yang Y, Hou H, Zhang Y, Fang L, Chen J, Ji X (2015) J Phys Chem C 119:3923–3930

    Article  CAS  Google Scholar 

  6. Wang Z, Luan D, Boey FYC, Lou XW (2011) J Am Chem Soc 133:4738–4741

    Article  CAS  Google Scholar 

  7. Hong YJ, Son MY, Kang YC (2013) Adv Mater 25:2279–2283

    Article  CAS  Google Scholar 

  8. Kim WS, Hwa Y, Jeun JH, Sohn HJ, Hong SH (2013) J Power Sources 225:108–112

    Article  CAS  Google Scholar 

  9. Li L, Kovalchuk A, Tour JM (2014) Nano Res 7:1319–1326

  10. Dirican M, Lu Y, Ge Y, Yildiz O, Zhang X (2015) ACS Appl Mater Interfaces 7:18387–18396

    Article  CAS  Google Scholar 

  11. Kilibarda G, Szabó DV, Schlabach S, Winkler V, Bruns M, Hanemann T (2013) J Power Sources 233:139–147

    Article  CAS  Google Scholar 

  12. Wang J, Zhou Y, Hu Y, O’Hayre R, Shao Z (2011) J Phys Chem C 115:2529–2536

    Article  CAS  Google Scholar 

  13. Zhou X, Liu W, Yu X, Liu Y, Fang Y, Klankowski S, Yang Y, Brown JE, Li J (2014) ACS Appl Mater Interfaces 6:7434–7443

    Article  CAS  Google Scholar 

  14. Yu C, Bai Y, Yan D, Li X, Zhang W (2014) J Solid State Electrochem 18:1933–1940

    Article  CAS  Google Scholar 

  15. Winter M, Besenhard JO, Spahr ME, Novák P (1998) Adv Mater 10:725–763

    Article  CAS  Google Scholar 

  16. Palacin MR (2009) Chem Soc Rev 38:2565–2575

    Article  CAS  Google Scholar 

  17. Su X, Wu Q, Zhan X, Wu J, Wei S, Guo Z (2012) J Mater Sci 47:2519–2534

    Article  CAS  Google Scholar 

  18. Wang CM, Xu W, Liu J, Zhang JG, Saraf LV, Arey BW, Choi D, Yang ZG, Xiao J, Thevuthasan S, Baer DR (2011) Nano Lett 11:1874–1880

    Article  CAS  Google Scholar 

  19. Huang JY, Zhong L, Wang CM, Sullivan JP, Xu W, Zhang LQ, Mao SX, Hudak NS, Liu XH, Subramanian A, Fan H, Qi L, Kushima A, Li J (2010) Science 330:1515–1520

    Article  CAS  Google Scholar 

  20. Jiang X, Yang X, Zhu Y, Fan K, Zhao P, Li C (2013) New J Chem 37:3671–3678

    Article  CAS  Google Scholar 

  21. Park H, Song T, Han H, Devadoss A, Yuh J, Choi C, Paik U (2012) Electrochem Commun 22:81–84

    Article  CAS  Google Scholar 

  22. Guan C, Wang X, Zhang Q, Fan Z, Zhang H, Fan HJ (2014) Nano Lett 14:4852–4858

    Article  CAS  Google Scholar 

  23. Yang Z, Du G, Meng Q, Guo Z, Yu X, Chen Z, Guo T, Zeng R (2011) RSC Adv 1:1834–1840

    Article  CAS  Google Scholar 

  24. Park S, Seo SD, Lee S, Seo SW, Park KS, Lee CW, Kim DW, Hong KS (2012) J Phys Chem C116:21717–21726

    Google Scholar 

  25. Wu X, Zhang S, Wang L, Du Z, Fang H, Ling Y, Huang Z (2012) J Mater Chem 22:11151–11158

  26. Zhang H, Ren W, Cheng C (2015) Nanotechnology 26:274002

    Article  Google Scholar 

  27. Yi J, Li X, Hu S, Li W, Zeng R, Fu Z, Chen L (2011) Rare Metals 30:589–594

    Article  CAS  Google Scholar 

  28. Ma D, Dou P, Yu X, Yang H, Meng H, Sun Y, Zheng J, Xu X (2015) Mater Lett 157:228–230

    Article  CAS  Google Scholar 

  29. Cheong JY, Kim C, Jang JS, Kim ID (2016) RSC Adv 6:2920–2925

    Article  CAS  Google Scholar 

  30. Jeun JH, Park KY, Kim DH, Kim WS, Kim HC, Lee BS, Kim H, Yu WR, Kang K, Hong SH (2013) Nano 5:8480–8483

    CAS  Google Scholar 

  31. Aravindan V, Jinesh KB, Prabhakar RR, Kale VS, Madhavi S (2013) Nano Energy 2:720–725

    Article  CAS  Google Scholar 

  32. Du G, Guo Z, Zhang P, Li Y, Chen M, Wexler D, Liu H (2010) J Mater Chem 20:5689–5694

    Article  CAS  Google Scholar 

  33. Ji G, Ding B, Ma Y, Lee JY (2013) Energy Technol 1:567–572

    Article  CAS  Google Scholar 

  34. Barreca D, Carraro G, Gasparotto A, Maccato C, Cruz-Yusta M, Gómez-Camer JL, Morales J, Sada C, Sánchez L (2012) ACS Appl Mater Interfaces 4:3610–3619

  35. Fang S, Shen L, Xu G, Nie P, Wang J, Dou H, Zhang X (2014) ACS Appl Mater Interfaces 6:6497–6503

  36. Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Fuller TF, Luzinov I, Yushin G (2010) ACS Appl Mater Interfaces 2:3004–3010

    Article  CAS  Google Scholar 

  37. Ming J, Ming H, Kwak WJ, Shin C, Zheng J, Sun YK (2014) Chem Commun 50:13307–13310

    Article  CAS  Google Scholar 

  38. Zhang SS (2006) J Power Sources 162:1379–1394

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT, and Future Planning (MSIP) (No. NRF-2015R1A5A1037627).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Hyeon Hong.

Electronic supplementary material

ESM 1

(PPT 878 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jean, JH., Kwak, H., Kim, WS. et al. TiO2@SnO2@TiO2 triple-shell nanotube anode for high-performance lithium-ion batteries. J Solid State Electrochem 21, 2365–2371 (2017). https://doi.org/10.1007/s10008-017-3584-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3584-5

Keywords

Navigation