Journal of Solid State Electrochemistry

, Volume 21, Issue 7, pp 1907–1923 | Cite as

A critical review-promises and barriers of conversion electrodes for Li-ion batteries

  • Alexander KraytsbergEmail author
  • Yair Ein-EliEmail author


Conversion-type electrode materials are discussed in this critical review. Most of the conversion materials are significantly less expensive than modern intercalation-type materials, and the materials involved are appreciably abundant in the nature. However, up to now, no practically viable battery with conversion material-based electrodes was reported, as there are several major barriers to a practical employment of these materials. First, material utilization and cell energy performance are seriously compromised by a low conductivity of the most conversion materials and by a substantial electrolyte involvement in the electrochemical process. Second, the conversion reactions usually demonstrate a severe volume effect, and also conversion electrodes interact with electrolyte developing thick and resistant solid electrolyte interphase films; both of these features result in impractically low electrode cyclability. Third, a large lithiation/de-lithiation voltage hysteresis results in impractically low charge/discharge energy efficiency and suggests a severe battery heating in the course of the battery operation. All these problems present serious challenges for the researchers in the field; the approaches for handling these issues are discussed in the review. For the foreseeable future, there are grounds to expect progress in tackling some of these issues. The issue of high voltage hysteresis is a bottleneck, though, and it actually precludes conversion materials from any practical application.


Active Material Solid Electrolyte Interphase Mechanical Cycling Conductive Additive Solid Electrolyte Interphase Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the support of the 2nd Israel National Research for Electrochemical Propulsion (INREP 2), Grand Technion Energy Program (GTEP), and the Helmsley Charity Fund.


  1. 1.
    Julien C, Mauger A, Vijh A, Zaghib K (2016) Lithium batteries. Springer International Publishing, SwitzerlandGoogle Scholar
  2. 2.
    Debart A, Dupont L, Poizot P, Leriche J-B, Tarascon JM (2001) A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J Electrochem Soc 148:A1266–A1274CrossRefGoogle Scholar
  3. 3.
    Chadwick AV, Savin SLP, Fiddy S, Alcantara R, Lisbona DF, Lavela P, Ortiz GF, Tirado JL (2007) Formation and oxidation of nanosized metal particles by electrochemical reaction of Li and Na with NiCo2O4: X-ray absorption spectroscopic study. J Phys Chem C 111:4636–4642CrossRefGoogle Scholar
  4. 4.
    Poizot P, Laruelle S, Grugeon S, Tarascon J-M (2002) Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward li. J Electrochem Soc 149:A1212–A1217CrossRefGoogle Scholar
  5. 5.
    Luo L, Wu J, Xu J, Dravid VP (2014) Atomic resolution study of reversible conversion reaction in metal oxide electrodes for lithium-ion battery. ACS Nano 8:11560–11566CrossRefGoogle Scholar
  6. 6.
    Kang Y-M, Song M-S, Kim J-H, Kim H-S, Park M-S, Lee J-Y, Liu HK, Dou SX (2005) A study on the charge–discharge mechanism of Co3O4 as an anode for the Li ion secondary battery. Electrochim Acta 50:3667–3673CrossRefGoogle Scholar
  7. 7.
    Ma J, Liu W-Y, Li C-L, Fu Z-W (2006) Electrochemical and quantum chemical studies of the reactions of transition metals M (M = Co, Fe and Ni) with LiF and Li2O. Electrochim Acta 51:2030–2041CrossRefGoogle Scholar
  8. 8.
    Klein F, Pinedo R, Hering P, Polity A, Janek J, Adelhelm P (2016) Reaction mechanism and surface film formation of conversion materials for lithium- and sodium-ion batteries: an XPS case study on sputtered copper oxide (CuO) thin film model electrodes. J Phys Chem C 120:1400–1414CrossRefGoogle Scholar
  9. 9.
    Zu C-X, Li H (2011) Thermodynamic analysis on energy densities of batteries. Energy Environ Sci 4:2614–2624CrossRefGoogle Scholar
  10. 10.
    Seo JK, Cho HM, Takahara K, Chapman KW, Borkiewicz OJ, Sina M, Meng YS (2017) Revisiting the conversion reaction voltage and the reversibility of the CuF2 electrode in Li-ion batteries. Nano Res. doi: 10.1007/s12274-016-1365-6
  11. 11.
    Li H, Balay P, Maier J (2004) Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc 151:A1878–A1885CrossRefGoogle Scholar
  12. 12.
    Wang C, Hong J (2007) Ionic/electronic conducting characteristics of LiFePO4 cathode materials—the determining factors for high rate performance. Electrochem Solid-State Lett 10:A65–A69CrossRefGoogle Scholar
  13. 13.
    Wu B, Ren Y, Li N (2011) LiFePO4 cathode material. In: Soylu S (ed) Electric vehicles, the benefits and barriers. InTech, p. 199–216 Accessed 17 March 2017
  14. 14.
    Yi T-F, Yang S-Y, Xie Y (2015) Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J Mater Chem A 3:5750–5777CrossRefGoogle Scholar
  15. 15.
    Zhong Z, Ouyang C, Shi S, Lei M (2008) Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries. ChemPhysChem 9:2104–2108CrossRefGoogle Scholar
  16. 16.
    Heikes RR, Johnston WD (1957) Mechanism of conduction in Li-substituted transition metal oxides. J Chem Phys 26:582–587CrossRefGoogle Scholar
  17. 17.
    Appandairajan NK, Gopalakrishnan J (1978) A study of CoO3-xNixO4 (0≤ x ≤1) system. Proc Indian Acad Sci 87A:115–120Google Scholar
  18. 18.
    Klose PH (1970) Electrical properties of manganese dioxide and manganese sesquioxide. J Electrochem Soc 117:854–858CrossRefGoogle Scholar
  19. 19.
    Julkarnain MD, Hossain J, Sharif KS, Khan K (2011) A temperature effect on the electrical properties of chromium oxide (Cr2O3) thin films. J Optoelectron Adv M 13:485–490Google Scholar
  20. 20.
    Batko I, Batkova M, Lofaj F (2014) Electrical resistivity of CrN thin films. Acta Phys Pol A 126:415–416CrossRefGoogle Scholar
  21. 21.
    Gardner RFG, Sweett F, Tanner DW (1963) The electrical properties of alpha ferric oxide—I. J Phys Chem Solids 24:1175–1181CrossRefGoogle Scholar
  22. 22.
    Miles PA, Westphal WB, von Hippel A (1957) Dielectric Spectroscopy of ferromagnetic semiconductors. Rev Mod Phys 29:279–308CrossRefGoogle Scholar
  23. 23.
    Ryden WD, Lawson AW, Sartain CC (1970) Electrical transport properties of IrO2 and RuO2. Phys Rev B 1:1494–1500CrossRefGoogle Scholar
  24. 24.
    Sunu SS, Prabhu E, Jayaraman V, Gnanasekar KI, Seshagiri TK, Gnanasekaran T (2004) Electrical conductivity and gas sensing properties of MoO3. Sensor Actuat B-Chem 101:161–174CrossRefGoogle Scholar
  25. 25.
    Chen P, Xu K, Tong Y, Li X, Tao S, Fang Z, Chu W, Wua X, Wu C (2016) Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction. Inorg Chem Front 3:236–242CrossRefGoogle Scholar
  26. 26.
    Pearce CI, Pattrick RAD, Vaughan DJ (2006) Electrical and magnetic properties of sulfides. Rev Mineral Geochem 61:127–180CrossRefGoogle Scholar
  27. 27.
    SHAJI V, IYPE M (2011) Effect of annealing on the activation energy of thin films of manganese sulphide, copper phthalocyanine and multilayer manganese sulphide-copper phthalocyanine from their electrical studies. Orientjchem 27:265–269Google Scholar
  28. 28.
    Crawford JH Jr, Williams FE (1950) Electronic processes in zinc fluoride and in the manganese-activated zinc fluoride phosphor. J Chem Phys 18:775–780CrossRefGoogle Scholar
  29. 29.
    Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon J-M (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148:A285–A292CrossRefGoogle Scholar
  30. 30.
    Martin L, Martinez H, Poinot D, Pecquenard B, Cras FL (2014) Direct observation of important morphology and composition changes at the surface of the CuO conversion material in lithium batteries. J Power Sourses 248:861–873CrossRefGoogle Scholar
  31. 31.
    Evmenenko G, Fister TT, Buchholz DB, Li Q, Chen K-S, Wu J, Dravid VP, Hersam MC, Fenter P, Bedzykn MJ (2016) Morphological evolution of multilayer Ni/NiO thin film electrodes during lithiation. ACS Appl Mater Interfaces 8:19979–19986CrossRefGoogle Scholar
  32. 32.
    Rezvani SJ, Gunnella R, Witkowska A, Mueller F, Pasqualini M, Nobili F, Passerini S, Cicco AD (2017) Is the solid electrolyte interphase an extra-charge reservoir in li-ion batteries? ACS Appl Mater Interfaces 9:4570–4576CrossRefGoogle Scholar
  33. 33.
    Jamnik J, Maier J (2003) Nanocrystallinity effects in lithium battery materials. Aspects of nano-ionics. Part IV. Phys Chem Chem Phys 5:5215–5220CrossRefGoogle Scholar
  34. 34.
    Zhukovskii YF, Kotomin EA, Balaya P, Maier J (2008) Enhanced interfacial lithium storage in nanocomposites of transition metals with LiF and Li2O: comparison of DFT calculations and experimental studies. Solid State Sci 10:491–495CrossRefGoogle Scholar
  35. 35.
    Hassan AS, Navulla A, Meda L, Ramachandran BR, Wick CD (2015) Molecular mechanisms for the Lithiation of ruthenium oxide nanoplates as lithium-ion battery anode materials: an experimentally motivated computational study. J Phys Chem C 119:9705–9713CrossRefGoogle Scholar
  36. 36.
    Kim Y, Muhammad S, Kim H, Cho Y-H, Kim H, Kim JM, Yoon W-S (2015) Probing the additional capacity and reaction mechanism of the RuO2 anode in lithium rechargeable batteries. ChemSusChem 8:2378–2384CrossRefGoogle Scholar
  37. 37.
    Croguennec L, Palacin MR (2015) Recent achievements on inorganic electrode materials for lithium-ion batteries. J Am Chem Soc 137:3140–3156CrossRefGoogle Scholar
  38. 38.
    Balaya P, Li H, Kienle L, Maier J (2003) Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv Funct Mater 13:621–625CrossRefGoogle Scholar
  39. 39.
    Ranganath SB, Hassan AS, Ramachandran BR, Wick CD (2016) Role of metal-lithium oxide interfaces in the extra lithium capacity of metal oxide lithium-ion battery anode materials. J Electrochem Soc 163:A2172–A2178CrossRefGoogle Scholar
  40. 40.
    Ponrouch A, Taberna P-L, Simon P, Palacín MR (2012) On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction. Electrochim Acta 61:13–18CrossRefGoogle Scholar
  41. 41.
    Amatucci GG, Pereira N (2007) Fluoride based electrode materials for advanced energy storage devices. J Fluor Chem 128:243–262CrossRefGoogle Scholar
  42. 42.
    Kim Y, Goodenough JB (2008) Lithium insertion into transition-metal monosulfides: tuning the position of the metal 4s band. J Phys Chem C 112:15060–15064CrossRefGoogle Scholar
  43. 43.
    Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRefGoogle Scholar
  44. 44.
    Malini R, Uma U, Sheela T, Ganesan M, Renganathan NG (2009) Conversion reactions: a new pathway to realise energy in lithium-ion battery—review. Ionics 15:301–307CrossRefGoogle Scholar
  45. 45.
    Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593–4607CrossRefGoogle Scholar
  46. 46.
    Cabana J, Monconduit L, Larcher D, Palacín MR (2010) Beyond intercalation-based li-ion batteries: the state of the art and challenges of electrode materials reacting through conversions. Adv Mater 22:E170–E192CrossRefGoogle Scholar
  47. 47.
    Wu HB, Chen JS, Hng HH, Lou XWD (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nano 4:2526–2542Google Scholar
  48. 48.
    Reddy MV, Rao GVS, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457CrossRefGoogle Scholar
  49. 49.
    Rui X, Tan H, Yan Q (2014) Nanostructured metal sulfides for energy storage. Nano 6:9889–9924Google Scholar
  50. 50.
    Nitta N, Yushin G (2014) High-capacity anode materials for lithium-ion batteries: choice of elements and structures for active particles. Part Part Syst Charact 31:317–336CrossRefGoogle Scholar
  51. 51.
    Aravindan V, Lee Y-S, Madhavi S (2015) Research progress on negative electrodes for practical Li-ion batteries: beyond carbonaceous anodes. Adv Energy Mater 5:1402225CrossRefGoogle Scholar
  52. 52.
    Andre D, Kim S-J, Lamp P, Lux SF, Maglia F, Paschos O, Stiaszny B (2015) Future generations of cathode materials: an automotive industry perspective. J Mater Chem A 3:6709–6732CrossRefGoogle Scholar
  53. 53.
    Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264CrossRefGoogle Scholar
  54. 54.
    Yu S-H, Lee SH, Lee DJ, Sung Y-E, Hyeon T (2016) Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 12:2146–2172CrossRefGoogle Scholar
  55. 55.
    Chen R, Luo R, Huang Y, Wu F, Li L (2016) Advanced high energy density secondary batteries with multi-electron reaction materials. Adv Sci 3:1600051CrossRefGoogle Scholar
  56. 56.
    Mahmood N, Tang T, Houn Y (2016) Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv Energy Mater 6:1600374CrossRefGoogle Scholar
  57. 57.
    Wu F, Yushin G (2017) Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ Sci 10:435–459CrossRefGoogle Scholar
  58. 58.
    Jung S-K, Kim H, Cho MG, Cho S-P, Lee B, Kim H, Park Y-U, Hong J, Park K-Y, Yoon G, Seong WM, Cho Y, Oh MH, Kim H, Gwon H, Hwang I, Hyeon T, Yoon W-S, Kang K (2017) Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries. Nat Energy 2:16208CrossRefGoogle Scholar
  59. 59.
    Deng D (2017) Transition metal oxyfluorides for next-generation rechargeable batteries. ChemNanoMat 3:145–159CrossRefGoogle Scholar
  60. 60.
    Meister P, Jia H, Li J, Kloepsch R, Winter M, Placke T (2016) Best practice: performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency. Chem Mater 28:7203–7217CrossRefGoogle Scholar
  61. 61.
    Takeuchi T, Sakaebe H, Kageyama H, Sakai T, Tatsumi K (2008) Preparation of NiS2 using spark-plasma-sintering process and its electrochemical properties. J Electrochem Soc 155:A679–A684CrossRefGoogle Scholar
  62. 62.
    Zhou J, Zhang D, Zhang X, Song H, Chen X (2014) Carbon-nanotube-encapsulated FeF2 nanorods for high performance lithium-ion cathode materials. Appl Mater Interfaces 6:21223–21229CrossRefGoogle Scholar
  63. 63.
    Vidal-Abarca C, Lavela P, Tirado JL (2010) The origin of capacity fading in NiFe2O4 conversion electrodes for lithium ion batteries unfolded by 57Fe Mössbauer Spectroscopy. J Phys Chem C 114:12828–12832CrossRefGoogle Scholar
  64. 64.
    Beattie SD, Larcher D, Morcrette M, Simon B, Tarascon J-M (2008) Si-electrodes for Li-ion batteries—a new way to look at an old problem. J Electrochem Soc 155:A158–A163CrossRefGoogle Scholar
  65. 65.
    Erk C, Brezesinski T, Sommer H, Schneider R, Janek J (2013) Toward silicon anodes for next-generation lithium ion batteries: a comparative performance study of various polymer binders and silicon Nanopowders. ACS Appl Mater Interfaces 5:7299–7307CrossRefGoogle Scholar
  66. 66.
    Ko M, Chae S, Cho J (2015) Challenges in accommodating volume change of Si anodes for Li-ion batteries. ChemElectroChem 2:1645–1651CrossRefGoogle Scholar
  67. 67.
    Mazouzi D, Karkar Z, Hernandez CR, Manero PJ, Guyomard D, Roué L, Lestriez B (2015) Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. J Power Sources 280:533–549CrossRefGoogle Scholar
  68. 68.
    Park S-H, Higgins T, King PJ, Zhang C, Coleman JN, Nicolosi V (2016) PEDOT:PSS conducting polymer as binder and conductive additive for silicon nanoparticle-based lithium-ion battery anodes. Abs 484. In: ECS Meeting Abstracts MA2016-02 Honolulu, Hawaii 2–7 October 2016Google Scholar
  69. 69.
    Hwang C, Joo S, Kang N-R, Lee U, Kim T-H, Jeon Y, Kim J, Kim Y-J, Kim J-Y, Kwak S-K, Song H-K (2015) Breathing silicon anodes for durable high-power operations. Sci Rep 5:14433CrossRefGoogle Scholar
  70. 70.
    Ling M, Xu Y, Zhao H, Gu X, Qiu J, Li S, Wu M, Song X, Yan C, Liu G, Zhang S (2015) Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy 12:178–185CrossRefGoogle Scholar
  71. 71.
    Huang S, Zhu T (2011) Atomistic mechanisms of lithium insertion in amorphous silicon. J Power Sources 196:3664–3668CrossRefGoogle Scholar
  72. 72.
    Jung H, Park M, Han SH, Lim H, Joo S-K (2003) Amorphous silicon thin-film negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries. Solid State Commun 125:387–390CrossRefGoogle Scholar
  73. 73.
    Jerliu B, Huger E, Dorrer L, Seidlhofer B-K, Steitz R, Oberst V, Geckle U, Bruns M, Schmidt H (2014) Volume expansion during lithiation of amorphous silicon thin film electrodes studied by in-operando neutron reflectometry. J Phys Chem C 118:9395–9399CrossRefGoogle Scholar
  74. 74.
    Hu J, Li H, Huang X, Chen L (2006) Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries. Solid State Ionics 177:2791–2799CrossRefGoogle Scholar
  75. 75.
    Wilhelm HA, Marino C, Darwiche A, Monconduit L, Lestriez B (2012) Significant electrochemical performance improvement of TiSnSb as anode material for Li-ion batteries with composite electrode formulation and the use of VC and FEC electrolyte additives. Electrochem Commun 24:89–92CrossRefGoogle Scholar
  76. 76.
    Ma R, Lu Z, Wang C, Wang H-E, Yang S, Xia L, Chung JCY (2013) Large-scale fabrication of graphene-wrapped FeF3 nanocrystals as cathode materials for lithium ion batteries. Nano 5:6338–6343Google Scholar
  77. 77.
    Chou S-L, Pan Y, Wang J-Z, Liu H-K, Dou S-X (2014) Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys Chem Chem Phys 16:20347–20359CrossRefGoogle Scholar
  78. 78.
    Kim K-W, Kim JS, Lee S-W, Lee JK (2015) Employment of chitosan-linked iron oxides as mesoporous anode materials for improved lithium–ion batteries. Electrochim Acta 170:146–153CrossRefGoogle Scholar
  79. 79.
    Wang X, Gu W, Lee JT, Nitta N, Benson J, Magasinski A, Schauer MW, Yushin G (2015) Carbon nanotube–CoF2 multifunctional cathode for lithium ion batteries: effect of electrolyte on cycle stability. Small 115:164–5173Google Scholar
  80. 80.
    Gómez-Cámer JL, Novák P (2015) Polyacrylate bound TiSb2 electrodes for Li-ion batteries. J Power Sources 273:174–179CrossRefGoogle Scholar
  81. 81.
    Zhao Y, Wei C, Sun S, Wang LP, Xu ZJ (2015) Reserving interior void space for volume change accommodation: an example of cable-like MWNTs@SnO2@C composite for superior lithium and sodium storage. Adv Sci 2:1500097CrossRefGoogle Scholar
  82. 82.
    Fan X, Zhu Y, Luo C, Suo L, Lin Y, Gao T, Xu K, Wang C (2016) Pomegranate-structured conversion-reaction cathode with a built-in Li source for high-energy Li-ion batteries. ACS Nano 10:5567–5577CrossRefGoogle Scholar
  83. 83.
    Gu W, Borodin O, Zdyrko B, Lin H-T, Kim H, Nitta N, Huang J, Magasinski A, Milicev Z, Berdichevsky G, Yushin G (2016) Lithium–iron fluoride battery with in situ surface protection. Adv Funct Mater 26:1507–1516CrossRefGoogle Scholar
  84. 84.
    Liu J, Xu X, Hu R, Yang L, Zhu M (2016) Uniform hierarchical Fe3O4@Polypyrrole nanocages for superior lithium ion battery anodes. Adv Energy Mater 6:1600256CrossRefGoogle Scholar
  85. 85.
    Lin C-F, Noked M, Kozen AC, Liu C, Zhao O, Gregorczyk K, Hu L, Lee SB, Rubloff GW (2016) Solid electrolyte lithium phosphous oxynitride as a protective nanocladding layer for 3D high-capacity conversion electrodes. ACS Nano 10:2693–2701CrossRefGoogle Scholar
  86. 86.
    Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131CrossRefGoogle Scholar
  87. 87.
    Li L, Meng F, Jin S (2012) High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism. Nano Lett 12:6030–6037CrossRefGoogle Scholar
  88. 88.
    Li XL, Zhang YL, Song HF, Du K, Wang H, Li HY, Huang JM (2012) The comparison of carbon conductive additives with different dimensions on the electrochemical performance of LiFePO4 cathode. Int J Electrochem Sci 7:7111–7120Google Scholar
  89. 89.
    Murugan AV, Muraliganth T, Manthiram A (2008) Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries. J Phys Chem C 112:14665–14671CrossRefGoogle Scholar
  90. 90.
    Chung S-Y, Bloking JT, Chiang Y-M (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128CrossRefGoogle Scholar
  91. 91.
    Wang D, Li H, Shi S, Huang X, Chen L (2005) Improving the rate performance of LiFePO4 by Fe-site doping. Electrochim Acta 50:2955–2958CrossRefGoogle Scholar
  92. 92.
    Chen CH, Vaughey JT, Jansen AN, Dees DW, Kahaian AJ, Goacher T, Thackeray MM (2001) Studies of Mg-substituted Li4-xMgxTi5O12 spinel electrodes (0< x< 1) for lithium batteries. J Electrochem Soc 148:A102–A104CrossRefGoogle Scholar
  93. 93.
    Wolfenstine J, Lee U, Allen JL (2006) Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere. J Power Sources 154:287–289CrossRefGoogle Scholar
  94. 94.
    Badway F, Pereira N, Cosandey F, Amatucci GG (2003) Carbon-metal fluoride nanocomposites structure and electrochemistry of FeF3:C. J Electrochem Soc 150:A1209–A1218CrossRefGoogle Scholar
  95. 95.
    Zhou G, Wang D-W, Li F, Zhang L, Li N, Wu Z-S, Wen L, Lu GQM, Cheng H-M (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313CrossRefGoogle Scholar
  96. 96.
    Li T, Ai XP, Yang HX (2011) Reversible electrochemical conversion reaction of Li2O/CuO nanocomposites and their application as high-capacity cathode materials for li-ion batteries. J Phys Chem C 115:6167–6174CrossRefGoogle Scholar
  97. 97.
    Mai YJ, Xia XH, Chen R, Gu CD, Wang XL, Tu JP (2012) Self-supported nickel-coated NiO arrays for lithium-ion batteries with enhanced capacity and rate capability. Electrochim Acta 67:73–78CrossRefGoogle Scholar
  98. 98.
    Ma R, Wang M, Tao P, Wang Y, Cao C, Shan G, Yang S, Xi L, Chung JCY, Lu Z (2013) Fabrication of FeF3 nanocrystals dispersed into a porous carbon matrix as a high performance cathode material for lithium ion batteries. J Mater Chem A 1:15060–15067CrossRefGoogle Scholar
  99. 99.
    Parzych G, Mikhailova D, Oswald S, Taschner C, Ritschel M, Leonhardt A, Eckert J, Ehrenberg H (2014) Improved electrochemical performance of Cu3B2O6-based conversion Model electrodes by composite formation with different carbon additives. J Electrochem Soc 161:A1224–A1230CrossRefGoogle Scholar
  100. 100.
    Jiang H, Hu Y, Guo S, Yan C, Lee PS, Li C (2014) Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life li-ion batteries. ASC Nano 8:6038–6046CrossRefGoogle Scholar
  101. 101.
    Ko JK, Halajko A, Parkinson MF, Amatucci GG (2015) Electronic transport in lithiated iron and bismuth fluoride. J Electrochem Soc 162:A149–A154CrossRefGoogle Scholar
  102. 102.
    Chun J, Jo C, Sahgong S, Kim MG, Lim E, Kim DH, Hwang J, Kang E, Ryu KA, Jung YS, Kim Y, Lee J (2016) Ammonium fluoride mediated synthesis of anhydrous metal fluoride–mesoporous carbon nanocomposites for high-performance lithium ion battery cathodes. ACS Appl Mater Interfaces 8:35180–35190CrossRefGoogle Scholar
  103. 103.
    Shen Y, Wang X, Hu H, Jiang M, Wei S, Bai Y (2016) A reversible conversion and intercalation reaction material for Li ion battery cathode. Mater Lett 180:260–263CrossRefGoogle Scholar
  104. 104.
    Wang H, Lin J, Shen ZX (2016) Polyaniline (PANi) based electrode materials for energy storage and conversion. Journal of Science: Advanced Materials and Devices 1:225–255Google Scholar
  105. 105.
    Wang J, Zhou H, Nanda J, Braun PV (2015) Three-dimensionally mesostructured Fe2O3 electrodes with good rate performance and reduced voltage hysteresis. Chem Mater 27:2803–2811CrossRefGoogle Scholar
  106. 106.
    Xu H, Zeng M, Li J (2015) Graphene-wrapped Cr2O3 hollow nanospheres with enhanced electrochemical performances for lithium-ion batteries. Int J Electrochem Sci 10:7361–7370Google Scholar
  107. 107.
    Nguyen T-A, Kim IT, Lee S-W (2016) Chitosan-tethered iron oxide composites as an antisintering porous structure for high-performance Li-ion battery anodes. J Am Ceram Soc 99:2720–2728CrossRefGoogle Scholar
  108. 108.
    Lia H, Ma H, Yang M, Wang B, Shao H, Wang L, Yu R, Wang D (2017) Highly controlled synthesis of multi-shelled NiO hollow microspheres for enhanced lithium storage properties. Mater Res Bull 87:224–229CrossRefGoogle Scholar
  109. 109.
    Mueller F, Geiger D, Kaiser U, Passerini S, Bresser D (2016) Elucidating the impact of cobalt doping on the lithium storage mechanism in conversion/alloying-type zinc oxide anodes. ChemElectroChem 3:1311–1319CrossRefGoogle Scholar
  110. 110.
    Yang Z, Pei Y, Wang X, Liu L, Su X (2012) First principles study on the structural, magnetic and electronic properties of Co-doped FeF3. Comp Theor Chem 980:44–48CrossRefGoogle Scholar
  111. 111.
    Bai Y, Zhou X, Jia Z, Wu C, Yang L, Chen M, Zhao H, Wu F, Liu G (2015) Understanding the combined effects of microcrystal growth and band gap reduction for Fe(1−x)TixF3 nanocomposites as cathode materials for lithium-ion batteries. Nano Energy 17:140–151CrossRefGoogle Scholar
  112. 112.
    Liu L, Zhou M, Yi L, Guo H, Tan J, Shu H, Yang X, Yang Z, Wang X (2012) Excellent cycle performance of co-doped FeF3/C nanocomposite cathode material for lithium-ion batteries. J Mater Chem 22:17539–17550CrossRefGoogle Scholar
  113. 113.
    Yang Z, Zhang Z, Yuan Y, Huang Y, Wang X, Chen X, Wei S (2016) First-principles study of Ti doping in FeF3·0.33H2O. Curr Appl Phys 16:905–913CrossRefGoogle Scholar
  114. 114.
    Lee J, Kang B (2016) Superior electrochemical performance of N-doped nanocrystalline FeF3/C with a single-step solid-state process. Chem Commun 52:12100CrossRefGoogle Scholar
  115. 115.
    Sauvage F, Tarascon J-M, Baudrin E (2007) In situ measurements of li ion battery electrode material conductivity: application to LixCoO2 and conversion reactions. J Phys Chem C 111:9624–9630CrossRefGoogle Scholar
  116. 116.
    Thackeray MM, Baker SD, Adendorff KT, Goodenough JB (1985) Lithium insertion into Co3O4: a preliminary investigation. Solid State Ionics 17:175–181CrossRefGoogle Scholar
  117. 117.
    Yamakawa N, Jiang M, Key B, Grey CP (2009) Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a li ion battery: a solid-state NMR, X-ray diffraction, and pair distribution function analysis study. J Am Chem Soc 131:10525–10536CrossRefGoogle Scholar
  118. 118.
    Li J, He K, Meng Q, Li X, Zhu Y, Hwang S, Sun K, Gan H, Zhu Y, Mo Y, Stach EA, Su D (2016) Kinetic phase evolution of spinel cobalt oxide during lithiation. ACS Nano 10:9577–9585CrossRefGoogle Scholar
  119. 119.
    Abraham A, Housel LM, Lininger CN, Bock DC, Jou J, Wang F, West AC, Marschilok AC, Takeuchi KJ, Takeuchi ES (2016) Investigating the complex chemistry of functional energy storage systems: the need for an integrative, multiscale (molecular to mesoscale) perspective. ACS Cent Sci 2:380–387CrossRefGoogle Scholar
  120. 120.
    Li Y, Sun H, Cheng X, Zhang Y, Zhao K (2016) In-situ TEM experiments and first-principles studies on the electrochemical and mechanical behaviors of α-MoO3 in li-ion batteries. Nano Energy 27:95–102CrossRefGoogle Scholar
  121. 121.
    Zhang W, Bock DC, Pelliccione CJ, Li Y, Wu L, Zhu Y, Marschilok AC, Takeuchi ES, Takeuchi KJ, Wang F (2016) Insights into ionic transport and structural changes in magnetite during multiple-electron transfer reactions. Adv Energy Mater 6:1502471CrossRefGoogle Scholar
  122. 122.
    Yu H-C, Wang F, Amatucci GG, Thornton K (2016) A phase-field model and simulation of kinetically asymmetric ternary conversion-reconversion transformation in battery electrodes. J Phase Equilib Diff 37:86–99CrossRefGoogle Scholar
  123. 123.
    Wang F, Robert R, Chernova NA, Pereira N, Omenya F, Badway F, Hua X, Ruotolo M, Zhang R, Wu L, Volkov V, Su D, Key B, Whittingham MS, Grey CP, Amatucci GG, Zhu Y, Graetz J (2011) Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J Am Chem Soc 133:18828–18836CrossRefGoogle Scholar
  124. 124.
    Wang F, Yu H-C, Van der Ven A, Thornton K, Pereira N, Zhu Y, Amatucci GG, Graetz J (2012) Ionic and electronic transport in metal fluoride conversion electrodes. ECS Trans 50:19–25CrossRefGoogle Scholar
  125. 125.
    Lin F, Nordlund D, Weng T-C, Zhu Y, Ban C, Richards RM, Xin HL (2014) Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nat Commun 5:3358Google Scholar
  126. 126.
    Kim S-W, Pereira N, Chernova NA, Omenya F, Gao P, Whittingham MS, Amatucci GG, Su D, Wang F (2015) Structure stabilization by mixed anions in oxyfluoride cathodes for high-energy lithium batteries. ACS Nano 9:10076–10084CrossRefGoogle Scholar
  127. 127.
    Hu R, Chen D, Waller G, Ouyang Y, Chen Y, Zhao B, Rainwater B, Yang C, Zhu M, Liu M (2016) Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity. Energy Environ Sci 9:595–603CrossRefGoogle Scholar
  128. 128.
    Gregorczyk KE, Liu Y, Sullivan JP, Rubloff GW (2013) In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2. ACS Nano 7:6354–6360CrossRefGoogle Scholar
  129. 129.
    Guo C, Yang Q, Liang J, Wang L, Zhu Y, Qian Y (2016) Sn nanoparticles uniformly dispersed in N-doped hollow carbon nanospheres as anode for lithium-ion batteries. Mater Lett 184:332–335CrossRefGoogle Scholar
  130. 130.
    Grugeon S, Laruelle S, Dupont L, Tarascon J-M (2003) An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci 5:895–904CrossRefGoogle Scholar
  131. 131.
    Larcher D, Bonnin D, Cortes R, Rivals I, Personnaz L, Tarascon J-M (2003) Combined XRD, EXAFS, and Mossbauer studies of the reduction by lithium of α-Fe2O3 with various particle sizes. J Electrochem Soc 150:A1643–A1650CrossRefGoogle Scholar
  132. 132.
    Laruelle S, Grugeon S, Poizot P, Dolle M, Dupont L, Tarascon J-M (2002) On the origin of the extra electrochemical capacity displayed by MO/li cells at low potential. J Electrochem Soc 149:A627–A634CrossRefGoogle Scholar
  133. 133.
    Dedryvère R, Laruelle S, Grugeon S, Poizot P, Gonbeau D, Tarascon J-M (2004) Contribution of X-ray photoelectron Spectroscopy to the study of the electrochemical reactivity of CoO toward lithium. Chem Mater 16:1056–1061CrossRefGoogle Scholar
  134. 134.
    Zeng Y, Li LF, Li H, Huang XJ, Chen LQ (2009) TG-MS analysis on thermal decomposable components in the SEI film on Cr2O3 powder anode in li-ion batteries. Ionics 15:91–96CrossRefGoogle Scholar
  135. 135.
    Maroni F, Gabrielli S, Palmieri A, Marcantoni E, Croce F, Nobili F (2016) High cycling stability of anodes for lithium-ion batteries based on Fe3O4 nanoparticles and poly(acrylic acid) binder. J Power Sources 332:79–87CrossRefGoogle Scholar
  136. 136.
    Wood SM, Pham CH, Heller A, Mullins CB (2016) Formation of an Electroactive polymer gel film upon lithiation and delithiation of PbSe. J Electrochem Soc 163:A1666–A1671CrossRefGoogle Scholar
  137. 137.
    Cheng M-Y, Ye Y-S, Chiu T-M, Pan C-J, Hwang B-J (2014) Size effect of nickel oxide for lithium ion battery anode. J Power Sources 253:27–34CrossRefGoogle Scholar
  138. 138.
    Choi W-S, Hwang S, Chang W, Shin H-C (2016) Degradation of Co3O4 anode in rechargeable lithium-ion battery: a semi-empirical approach to the effect of conducting material content. J Solid State Electrochem 20:345–352CrossRefGoogle Scholar
  139. 139.
    Sina M, Thorpe R, Rangan S, Pereira N, Bartynski RA, Amatucci GG, Cosandey F (2015) Investigation of SEI layer formation in conversion iron fluoride cathodes by combined STEM/EELS and XPS. J Phys Chem C 119:9762–9773CrossRefGoogle Scholar
  140. 140.
    Sina M, Pereira N, Amatucci GG, Cosandey F (2016) Microstructural evolution of iron oxyfluoride/carbon nanocomposites upon electrochemical cycling. J Phys Chem C 120:13375–13383CrossRefGoogle Scholar
  141. 141.
    Liao F, Swiatowska J, Maurice V, Seyeux A, Klein LH, Zanna S, Marcus P (2015) The influence of the electrolyte on chemical and morphological modifications of an iron sulfide thin film negative electrode. Phys Chem Chem Phys 17:619–629CrossRefGoogle Scholar
  142. 142.
    Gachot G, Grugeon S, Armand M, Pilard S, Guenot P, Tarascon J-M, Laruelle S (2008) Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in li batteries. J Power Sources 178:409–421CrossRefGoogle Scholar
  143. 143.
    Lemordant D, Zhang W, Ghamouss F, Farhat D, Darwiche A, Monconduit L, Dedryvère R, Martinez H, Cadra S, Lestriez B (2015) Artificial SEI for lithium-ion battery anodes: impact of fluorinated and nonfluorinated additives. In: Nakajima T, Groult H (ed) Advanced fluoride-based materials for energy conversion, 1st edn. Elsevier, p 173–202Google Scholar
  144. 144.
    Zhang W, Ghamouss F, Mery A, Lemordant D, Dedryvère R, Monconduit L, Martinez H (2015) Improvement of the stability of TiSnSb anode under lithiation using SEI forming additives and room temperature ionic liquid/DMC mixed electrolyte. Electrochim Acta 170:72–84CrossRefGoogle Scholar
  145. 145.
    Bruck AM, Gannett CN, Bock DC, Smith PF, Marschiloka AC, Takeuchi KJ, Takeuchi ES (2017) The electrochemistry of Fe3O4/polypyrrole composite electrodes in lithium-ion cells: the role of polypyrrole in capacity retention. J Electrochem Soc 164:A6260–A6267CrossRefGoogle Scholar
  146. 146.
    Zhou Y, Li Y, Yang J, Tian J, Xu H, Yang J, Fan W (2016) Conductive polymer-coated VS4 submicrospheres as advanced electrode materials in lithium-ion batteries. ACS Appl Mater Interfaces 8:18797–18805CrossRefGoogle Scholar
  147. 147.
    Zhou H, Wang X, Sheridan E, Chen D (2015) Boosting properties of 3D binder-free manganese oxide anodes by preformation of a solid electrolyte interphase. ChemSusChem 8:1368–1380CrossRefGoogle Scholar
  148. 148.
    Kercher AK, Kolopus JA, Carroll KJ, Unocic RR, Kirklin S, Wolverton C, Stooksbury SL, Boatner LA, Dudney NJ (2016) Mixed polyanion glass cathodes: glass-state conversion reactions. J Electrochem Soc 163:A131–A137CrossRefGoogle Scholar
  149. 149.
    Zhong K, Xia X, Zhang B, Li H, Wang Z, Chen L (2010) MnO powder as anode active materials for lithium ion batteries. J Power Sources 195:3300–3308CrossRefGoogle Scholar
  150. 150.
    Doe RE, Persson KA, Meng YS, Ceder G (2008) First-principles investigation of the li-Fe-F phase diagram and equilibrium and nonequilibrium conversion reactions of iron fluorides with lithium. Chem Mater 20:5274–5283CrossRefGoogle Scholar
  151. 151.
    Taberna PL, Mitra S, Poizot P, Simon P, Tarascon J-M (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mat 5:567–573CrossRefGoogle Scholar
  152. 152.
    Cheng K, Han N, Su Y, Zhang J, Zhao J (2017) Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations. Sci Rep 7:41771CrossRefGoogle Scholar
  153. 153.
    Ma X, Dai Y, Yu L, Huang B (2016) Interface Schottky barrier engineering via strain in metal–semiconductor composites. Nano 8:1352–1359Google Scholar
  154. 154.
    Liu P, Vajo JJ, Wang JS, Li W, Liu J (2012) Thermodynamics and kinetics of the Li/FeF3 reaction by electrochemical analysis. J Phys Chem C 116:6467–6473CrossRefGoogle Scholar
  155. 155.
    Delmer O, Balaya P, Kienle L, Maier J (2008) Enhanced potential of amorphous electrode materials: case study of RuO2. Adv Mater 20:501–505CrossRefGoogle Scholar
  156. 156.
    Delmer O, Maier J (2009) On the chemical potential of a component in a metastable phase—application to Li-storage in the RuO2–Li system. Phys Chem Chem Phys 11:6424–6429CrossRefGoogle Scholar
  157. 157.
    Khatib R, Dalverny A-L, Saubanère M, Gaberscek M, Doublet M-L (2013) Origin of the voltage hysteresis in the CoP conversion material for Li-ion batteries. J Phys Chem C 117:837–849CrossRefGoogle Scholar
  158. 158.
    Li L, Jacobs R, Gao P, Gan L, Wang F, Morgan D, Jin S (2016) Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes. J Am Chem Soc 138:2838–2848CrossRefGoogle Scholar
  159. 159.
    Sun J, Tang K, Yu X, Hu J, Li H, Huang X (2008) Overpotential and electrochemical impedance analysis on Cr2O3 thin film and powder electrode in rechargeable lithium batteries. Solid State Ionics 179:2390–2395CrossRefGoogle Scholar
  160. 160.
    Chevrier VL, Hautier G, Ong SP, Doe RE, Ceder G (2013) First-principles study of iron oxyfluorides and lithiation of FeOF. Phys Rev B 87:094118CrossRefGoogle Scholar
  161. 161.
    Chang D, Chen M-H, Van der Ven A (2015) Factors contributing to path hysteresis of displacement and conversion reactions in Li ion batteries. Chem Mater 27:7593–7600CrossRefGoogle Scholar
  162. 162.
    Wiaderek KM, Borkiewicz OJ, Castillo-Martínez E, Robert R, Pereira N, Amatucci GG, Grey CP, Chupas PJ, Chapman KW (2013) Comprehensive Insights into the structural and chemical changes in mixed-anion FeOF electrodes by using operando PDF and NMR Spectroscopy. J Am Chem Soc 135:4070–4078CrossRefGoogle Scholar
  163. 163.
    Sina M, Nam K-W, Su D, Pereira N, Yang X-Q, Amatucci GG, Cosandey F (2013) Structural phase transformation and Fe valence evolution in FeOxF2- x/C nanocomposite electrodes during lithiation and de-lithiation processes. J Mater Chem A 1:11629CrossRefGoogle Scholar
  164. 164.
    Ko JK, Wiaderek KM, Pereira N, Kinnibrugh TL, Kim JR, Chupas PJ, Chapman KW, Amatucci GG (2014) Transport, phase reactions, and hysteresis of iron fluoride and oxyfluoride conversion electrode materials for lithium batteries. ACS Appl Mater Interfaces 6:10858–10869CrossRefGoogle Scholar
  165. 165.
    Yu H-C, Ling C, Bhattacharya J, Thomas JC, Thornton K, Van der Ven A (2014) Designing the next generation high capacity battery electrodes. Energy Environ Sci 7:1760–1768CrossRefGoogle Scholar
  166. 166.
    Boesenberg U, Marcus MA, Shukla AK, Yi T, McDermott E, Teh PF, Srinivasan M, Moewes A, Cabana J (2014) Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity. Sci Rep 4:7133CrossRefGoogle Scholar
  167. 167.
    Wang F, Kim S-W, Seo D-H, Kang K, Wang L, Su D, Vajo JJ, Wang J, Graetz J (2015) Ternary metal fluorides as high-energy cathodes with low cycling hysteresis. Nat Commun 6:6668CrossRefGoogle Scholar
  168. 168.
    Monconduit L (2014) Recent advancements in the conversion-type Pnictide-based electrodes for li-ion batteries. J Phys Chem C 118:10531–10544CrossRefGoogle Scholar
  169. 169.
    Gao P, Wang L, Zhang Y-Y, Huang Y, Liao L, Sutter P, Liu K, Yu D, Wang E-G (2016) High-resolution tracking asymmetric lithium insertion and extraction and local structure ordering in SnS2. Nano Lett 16:5582–5588CrossRefGoogle Scholar
  170. 170.
    Wang F, Yu H-C, Chen M-H, Wu L, Pereira N, Thornton K, Van der Ven A, Zhu Y, Amatucci GG, Graetz J (2012) Tracking lithium transport and electrochemical reactions in nanoparticles. Nat Commun 3:1201CrossRefGoogle Scholar
  171. 171.
    Ponrouch A, Cabana J, Dugas R, Slack JL, Palacin MR (2014) Electroanalytical study of the viability of conversion reactions as energy storage mechanisms. RSC Adv 4:35988–35996CrossRefGoogle Scholar
  172. 172.
    Twu N, Li X, Moore C, Ceder G (2013) Synthesis and lithiation mechanisms of dirutile and rutile LiMnF4: two new conversion cathode materials. J Electrochem Soc 160:A1944–A1951CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringTechnion—Israel Institute of TechnologyHaifaIsrael
  2. 2.The Grand Technion Energy ProgramTechnion—Israel Institute of TechnologyHaifaIsrael

Personalised recommendations