Advertisement

Journal of Solid State Electrochemistry

, Volume 21, Issue 8, pp 2313–2320 | Cite as

Synthesis of one-dimensional graphene-encapsulated TiO2 nanofibers with enhanced lithium storage capacity for lithium-ion batteries

  • Dong Li
  • Enyan Guo
  • Qifang LuEmail author
  • Xueyang Ji
  • Mingzhi Wei
Original Paper

Abstract

The one-dimensional graphene/TiO2 composite nanofibers with the unique microstructures have been successfully synthesized via an efficient method and showed the improved rate capacity and excellent high rate performances as anode materials for lithium-ion batteries. The existence of graphene not only improves the electronic conductivity for serving as the additional transport channel but also avoids the agglomeration of anatase TiO2 nanofibers, consequently keeping their high active surface area. The graphene/TiO2 nanofibers possess the high reversible capacity (284.4 mAh g−1 at a current density of 100 mA g−1 after 100 cycles) and superior cyclic capacity retention at each of the different current rates for sequential cycles and exhibit the outstanding high rate performance with a capacity of 130 mAh g−1 at a current rate as high as 3200 mA g−1 after 300 cycles. The complementary and synergistic effect between anatase TiO2 nanofibers and graphene indicates that the graphene/TiO2 nanofibers could be one of the potential candidates for the related energy storage systems.

Keywords

Nanofibers Graphene Electrospinning Lithium-ion batteries 

Notes

Acknowledgements

This work was supported by Shandong Provincial Natural Science Foundation (Grant No. ZR2016BM22, ZR2016EMB23), Science and Technology Development Plan Project of Shandong Province (2014GGX102039), and Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J14LA01).

Supplementary material

10008_2017_3579_MOESM1_ESM.doc (4.2 mb)
ESM 1 (DOC 4294 kb).

References

  1. 1.
    Yin YX, Xin S, Guo YG, Wan LJ (2013) Angew Chem Int Ed 52(50):13186–13200CrossRefGoogle Scholar
  2. 2.
    Liu J, Zhang JG, Yang ZG, Lemmon JP, Imhoff C, Graff GL, Li LY, Hu JZ, Wang CM, Xiao J, Xia GD, Viswanathan VV, Baskaran S, Sprenkle V, Li XL, Shao YY, Schwenzer B (2013) Adv Funct Mater 23(8):929–946CrossRefGoogle Scholar
  3. 3.
    Bhattab MD, Dwyer CÓ (2015) Phys Chem Chem Phys 17(7):4799–4844CrossRefGoogle Scholar
  4. 4.
    Goodenough JB, Park KS (2013) J Am Chem Soc 135(4):1167–1176CrossRefGoogle Scholar
  5. 5.
    Zhao BT, Jiang SM, Su C, Cai R, Ran R, Tadé MO, Shao ZP (2013) J Mater Chem A 1(39):12310–12320CrossRefGoogle Scholar
  6. 6.
    Buiel E, Dahn JR (1999) Electrochim Acta 45(1):121–130Google Scholar
  7. 7.
    Chen ZH, Belharouak I, Sun YK, Amine K (2013) Adv Funct Mater 23(8):959–969Google Scholar
  8. 8.
    Li HB, Zhou QY, Gao YT (2015) Nano Res 8(3):900–906Google Scholar
  9. 9.
    Peng YT, Lo CT (2015) J Solid State Electrochem 19(11):3401–3410Google Scholar
  10. 10.
    Yu CY, Bai Y, Yan D, Li XG, Zhang WF (2014) J Solid State Electrochem 18(7):1933–1940Google Scholar
  11. 11.
    Li XD, Li W, Li MC, Cui P, Chen DH, Gengenbach T, Chu LH, Liu HY, Song GS (2015) J Mater Chem A 3(6):2762–2769Google Scholar
  12. 12.
    Wang YF, Wu MY, Zhang WF (2008) Electrochim Acta 53(27):7863–7868Google Scholar
  13. 13.
    Tang K, Yu Y, Mu XK, Aken P A, Maier J (2013) Electrochem Commun 28(28):54–57Google Scholar
  14. 14.
    Wu QL, Li JC, Deshpande RD, Subramanian N, Rankin SE, Yang FQ, Cheng YT (2012) J Phys Chem C 116(35):18669–18677Google Scholar
  15. 15.
    Wang ZY, Sha JW, Liu EZ, He CN, Shi CS, Li JJ, Zhao NQ (2014) J Mater Chem A 2(23):8893–8901Google Scholar
  16. 16.
    Novoselov KS, Geim AK, Morozov SV Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306(5696):666–669Google Scholar
  17. 17.
    Geim AK, Novoselov KS (2007) Nat Mater 6(3):183–191Google Scholar
  18. 18.
    Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22(35):3906–3924Google Scholar
  19. 19.
    Loh KP, Bao QL, Ang PK, Yang JX (2010) J Mater Chem 20(12):2277–2289Google Scholar
  20. 20.
    Zheng CC, He CH, Zhang HY, Wang WG, Lei XL (2015) Ionics 21(1):51–58Google Scholar
  21. 21.
    Yang SL, Cao CY, Huang PP, Peng L, Sun YB, Wei F, Song WG (2015) J Mater Chem A 3(16):8701–8705Google Scholar
  22. 22.
     Fu XX, Shi L, Fan CY, Yu SQ, Qian GD, Zhiyu Wang ZY (2015) Electrochim Acta 190(0):25–32Google Scholar
  23. 23.
    Zhang ZH, Zhang LD, Li W, Yu AS, Wu PY (2015) ACS Appl Mater Interfaces 7(19):10395–10400Google Scholar
  24. 24.
    Luo DC, Zhang GX, Liu JF, Sun XM (2011) J Phys Chem C 115(23):11327–11335Google Scholar
  25. 25.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Acs Nano 4(8):4806–4814Google Scholar
  26. 26.
    Zhang T, Huang JF, Zhou S, Ouyang HB, Cao LY, Li AT (2013) Ceram Int 39(7):7391–7394Google Scholar
  27. 27.
    Zhang YF, Li JY, Li Q, Zhu L, Liu XD, Zhong XH, Meng J, Cao XQ (2007) Scripta Mater 56(5):409–412Google Scholar
  28. 28.
    Zhang ZY, Li XH, Wang CH, Wei LM, Liu YC, Shao CL (2009) J Phys Chem C 113(45):19397–19403Google Scholar
  29. 29.
    Hou DF, Luo W, Huang YH, Yu JC, Hu XL (2013) Nanoscale 5(5):2028–2035Google Scholar
  30. 30.
    Cao HQ, Li BJ, Zhang JX, Lian F, Kong XH, Qu MZ (2012) J Mater Chem 22(19):9759–9766Google Scholar
  31. 31.
    Zhu MS, Li Z, Xiao B, Lu YT, Du YK, Yang P, Wang XM (2013) ACS Appl Mater Interfaces 5(5):1732–1740Google Scholar
  32. 32.
    Chen JS, Tan YL, Li CM, Cheah YL, Luan DY, Madhavi S, Chiang Boey FY, Archer LA, Lou XW (2012) J Am Chem Soc132(17):6124–6130Google Scholar
  33. 33.
    Ding SJ, Chen JS, Luan DY, FY Chiang Boey FY, Madhavibc S, Lou XW (2011) Chem Commun 47(20):5780–5782Google Scholar
  34. 34.
    Lian PC, Zhu XF, Liang SZ, Li Z, Yang WS, Wang HH (2010) Electrochim Acta 55(12):3909–3914Google Scholar
  35. 35.
    Kang J, Wei SH, Zhu K, Kim YH (2011) J Phys Chem C 115(11):4909–4915Google Scholar
  36. 36.
    Jiang ZQ, Pei B, Manthiram A (2013) J Mater Chem A 1(26):7775–7781Google Scholar
  37. 37.
    Surampudi S, Shen DH, Huang CK, Narayanan SR, Attia A, Halpert G (1993) J Power Sources 43(1):21–26Google Scholar
  38. 38.
    Shiraish S, Kanamura K, Takehara Z (1995) J Appl Electrochem 25 (6):584–591Google Scholar
  39. 39.
    Peng CX, Chen BD, Yao Q, Yang SH, Li CZ, Zuo YH, Liu SY, Yang JH (2011) Acs Nano 6(2):1074–1081Google Scholar
  40. 40.
    Wu ZS, Ren WC, Wen L, Gao LB, Zhao JP, Chen ZP, Zhou GM, Li F, Cheng HM (2010) ACS Nano 4(6):3187–3194Google Scholar
  41. 41.
    Jiang CH, Hosono EJ, Zhou HS (2006) Nano Today 1(4):28–33Google Scholar
  42. 42.
    Du N, Zhang H, Chen BD, Wu JB, Ma XY, Liu ZH, Zhang YQ, Yang DR, Huang XH, Tu JP (2010) Adv Mater 19(24):4505–4509Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Dong Li
    • 1
  • Enyan Guo
    • 1
  • Qifang Lu
    • 1
    Email author
  • Xueyang Ji
    • 1
  • Mingzhi Wei
    • 1
  1. 1.Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics, School of Material Science and EngineeringQilu University of TechnologyJinanPeople’s Republic of China

Personalised recommendations