Skip to main content

Advertisement

Log in

High energy density and lofty thermal stability nickel-rich materials for positive electrode of lithium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ni-rich LiNi0.8Mn0.1Co0.1O2 (NCM811) is one of the most promising electrode materials for Lithium-ion batteries (LIBs). However, its instability at potentials higher than 4.3 V hinders its use in LIBs. To overcome this barrier, we have prepared a core–shell material composed of a core of NCM811 (R-3m) and a monoclinic (C2/m) Li2MnO3 shell. The structure is confirmed by XRD, TEM, and XPS. This core–shell is very different from the conventional core–shell materials. In comparison, the conventional core–shell materials are layered R-3m structures which are instable at highly delithiated state (>4.5 V) due to the high repulsion between the two oxygen atoms facing each other across the empty Li site, while our synthesized material can be safely cycled at high upper cut-off potential of 4.7 V with high capacity retention. Compared to previously reported materials, the materials show substantially improved performance in terms of discharge capacity, energy density, and thermal stability. The upper cut-off potential is elevated from 4.3 to 4.7 V. Differential scanning calorimetry (DSC) results show that the exothermic peak of the core–shell structured material appears at 360 °C with a heat evolution of 575.1 J g−1, while that of the pristine material appears at 250 °C with a heat evolution of 239.1 J g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wei T, Zeng R, Sun Y, Huang Y, Huang K (2014) A reversible and stable flake-like LiCoO2 cathode for lithium ion batteries. Chem Commun (Camb) 50(16):1962–1964

    Article  CAS  Google Scholar 

  2. Kosova NV, Devyatkina ET (2007) Comparative study of LiCoO2 surface modified with different oxides. J Power Sources 174(2):959–964

    Article  CAS  Google Scholar 

  3. Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed Engl 54(15):4440–4457

    Article  CAS  Google Scholar 

  4. Sun YK, Lee DJ, Lee YJ, Chen Z, Myung ST (2013) Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. ACS Appl Mater Interfaces 5(21):11434–11440

    Article  CAS  Google Scholar 

  5. Zheng J, Kan WH, Manthiram A (2015) Role of Mn content on the electrochemical properties of nickel-rich layered LiNi0.8-xCo0.1Mn0.1+xO2 (0.0 </= x </= 0.08) cathodes for lithium-ion batteries. ACS Appl Mater Interfaces 7(12):6926–6934

    Article  CAS  Google Scholar 

  6. Zhu L, Liu Y, Wu W, Wu X, Tang W, Wu Y (2015) Surface fluorinated LiNi0.8Co0.15Al0.05O2as a positive electrode material for lithium ion batteries. J Mater Chem A 3(29):15156–15162

    Article  CAS  Google Scholar 

  7. Wu N, Wu H, Yuan W, Liu S, Liao J, Zhang Y (2015) Facile synthesis of one-dimensional LiNi0.8Co0.15Al0.05O2microrods as advanced cathode materials for lithium ion batteries. J Mater Chem A 3(26):13648–13652

    Article  CAS  Google Scholar 

  8. Jiang D, Zhao L, Shao Y, Wang D (2015) Preparation and characterization of layered LiNi0.9Co0.05Mn0.025Mg0.025O2cathode material by a sol–gel method for lithium-ion batteries. RSC Adv 5(51):40779–40784

    Article  CAS  Google Scholar 

  9. Cho Y, Oh P, Cho J (2013) A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer. Nano Lett 13(3):1145–1152

    Article  CAS  Google Scholar 

  10. Sun YK, Myung ST, Kim MH, Prakash J, Amine K (2005) Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. J Am Chem Soc 127(38):13411–13418

    Article  CAS  Google Scholar 

  11. Yang X, Wang D, Yu R, Bai Y, Shu H, Ge L, Guo H, Wei Q, Liu L, Wang X (2014) Suppressed capacity/voltage fading of high-capacity lithium-rich layered materials via the design of heterogeneous distribution in the composition. J Mater Chem A 2(11):3899

    Article  CAS  Google Scholar 

  12. Sun YK, Chen Z, Noh HJ, Lee DJ, Jung HG, Ren Y, Wang S, Yoon CS, Myung ST, Amine K (2012) Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater 11(11):942–947

    Article  CAS  Google Scholar 

  13. Sun H-H, Choi W, Lee JK, Oh I-H, Jung H-G (2015) Control of electrochemical properties of nickel-rich layered cathode materials for lithium ion batteries by variation of the manganese to cobalt ratio. J Power Sources 275:877–883

    Article  CAS  Google Scholar 

  14. Augustyn V, Therese S, Turner TC, Manthiram A (2015) Nickel-rich layered LiNi1−xMxO2(M = Mn, Fe, and Co) electrocatalysts with high oxygen evolution reaction activity. J Mater Chem A 3(32):16604–16612

    Article  CAS  Google Scholar 

  15. Armstrong AR, Dupre N, Paterson AJ, Grey CP, Bruce PG (2004) Combined neutron diffraction, NMR, and electrochemical investigation of the layered-to-spinel transformation in LiMnO2. Chem Mater 16(16):3106–3118

    Article  CAS  Google Scholar 

  16. Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang SH, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128(26):8694–8698

    Article  CAS  Google Scholar 

  17. Mohanty D, Li J, Abraham DP, Huq A, Payzant EA, Wood DL, Daniel C (2014) Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion. Chem Mater 26(21):6272–6280

    Article  CAS  Google Scholar 

  18. Myung S-T, Amine K, Sun Y-K (2010) Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries. J Mater Chem 20(34):7074

    Article  CAS  Google Scholar 

  19. Aurbach D (2003) Electrode–solution interactions in Li-ion batteries: a short summary and new insights. J Power Sources 119-121:497–503

    Article  CAS  Google Scholar 

  20. Park MS (2014) First-principles study of native point defects in LiNi1/3Co1/3Mn1/3O2 and Li2MnO3. Phys Chem Chem Phys 16(31):16798–16804

    Article  CAS  Google Scholar 

  21. Choi N-S, Han J-G, Ha S-Y, Park I, Back C-K (2015) Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries. RSC Adv 5(4):2732–2748

    Article  CAS  Google Scholar 

  22. Yim T, Kang KS, Mun J, Lim SH, Woo S-G, Kim KJ, Park M-S, Cho W, Song JH, Han Y-K, Yu J-S, Kim Y-J (2016) Understanding the effects of a multi-functionalized additive on the cathode–electrolyte interfacial stability of Ni-rich materials. J Power Sources 302:431–438

    Article  CAS  Google Scholar 

  23. Xu J, Hu Y, Liu T, Wu X (2014) Improvement of cycle stability for high-voltage lithium-ion batteries by in-situ growth of SEI film on cathode. Nano Energy 5:67–73

    Article  CAS  Google Scholar 

  24. Song D, Hou P, Wang X, Shi X, Zhang L (2015) Understanding the origin of enhanced performances in core-shell and concentration-gradient layered oxide cathode materials. ACS Appl Mater Interfaces 7(23):12864–12872

    Article  CAS  Google Scholar 

  25. Cho Y, Lee S, Lee Y, Hong T, Cho J (2011) Spinel-layered core-shell cathode materials for li-ion batteries. Adv Energy Mater 1(5):821–828

    Article  CAS  Google Scholar 

  26. Lee YS, Shin WK, Kannan AG, Koo SM, Kim DW (2015) Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with al(2)O(3) nanoparticles and conductive polymer. ACS Appl Mater Interfaces 7(25):13944–13951

    Article  CAS  Google Scholar 

  27. Xie Q, Hu Z, Zhao C, Zhang S, Liu K (2015) LaF3-coated Li[Li0.2Mn0.56Ni0.16Co0.08]O2as cathode material with improved electrochemical performance for lithium ion batteries. RSC Adv 5(63):50859–50864

    Article  CAS  Google Scholar 

  28. Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17(30):3112

    Article  CAS  Google Scholar 

  29. Kang SH, Thackeray MM (2008) Stabilization of xLi2MnO3⋅(1−x)LiMO2 electrode surfaces (M=Mn,Ni,co) with mildly acidic, fluorinated solutions. J Electrochem Soc 155(4):A269

    Article  CAS  Google Scholar 

  30. Yang J, Hou M, Haller S, Wang Y, Wang C, Xia Y (2016) Improving the cycling performance of the layered Ni-rich oxide cathode by introducing low-content Li2MnO3. Electrochim Acta 189:101–110

    Article  CAS  Google Scholar 

  31. Castel E, Berg EJ, El Kazzi M, Novák P, Villevieille C (2014) Differential electrochemical mass spectrometry study of the Interface ofxLi2MnO3·(1–x)LiMO2(M = Ni, co, and Mn) material as a positive electrode in Li-ion batteries. Chem Mater 26(17):5051–5057

    Article  CAS  Google Scholar 

  32. Yu H, Zhou H (2013) High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J Phys Chem Lett 4(8):1268–1280

    Article  CAS  Google Scholar 

  33. Mezaal MA, Qu L, Li G, Zhang R, Xuejiao J, Zhang K, Liu W, Lei L (2015) Promoting the cyclic and rate performance of lithium-rich ternary materials via surface modification and lattice expansion. RSC Adv 5(113):93048–93056

    Article  CAS  Google Scholar 

  34. Gong C, Lv W, Qu L, Bankole OE, Li G, Zhang R, Hu M, Lei L (2014) Syntheses and electrochemical properties of layered Li0.95Na0.05Ni1/3Co1/3Mn1/3O2 and LiNi1/3Co1/3Mn1/3O2. J Power Sources 247:151–155

    Article  CAS  Google Scholar 

  35. Zheng F, Yang C, Xiong X, Xiong J, Hu R, Chen Y, Liu M (2015) Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew Chem Int Ed Engl 54(44):13058–13062

    Article  CAS  Google Scholar 

  36. Chen W, Zhao J, Li Y, Li S, Jin C, Yang C, Feng X, Zhang J, Mi L (2014) Aluminum insertion-induced enhanced performance of li(Ni0.83-xCo0.10Mn0.07Aly)O2 microspheres for lithium-ion batteries design. ChemElectroChem 1(3):601–610

    Article  Google Scholar 

  37. Yang C, Zhang Q, Ding W, Zang J, Lei M, Zheng M, Dong Q (2015) Improving the electrochemical performance of layered lithium-rich cathode materials by fabricating a spinel outer layer with Ni3+. J Mater Chem A 3(14):7554–7559

    Article  CAS  Google Scholar 

  38. Yan J, Liu X, Li B (2014) Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv 4(108):63268–63284

    Article  CAS  Google Scholar 

  39. Long BR, Croy JR, Dogan F, Suchomel MR, Key B, Wen J, Miller DJ, Thackeray MM, Balasubramanian M (2014) Effect of cooling rates on phase separation in 0.5Li2MnO3·0.5LiCoO2 electrode materials for li-ion batteries. Chem Mater 26(11):3565–3572

    Article  CAS  Google Scholar 

  40. Qiao Q-Q, Li G-R, Wang Y-L, Gao X-P (2016) To enhance the capacity of Li-rich layered oxides by surface modification with metal–organic frameworks (MOFs) as cathodes for advanced lithium-ion batteries. J Mater Chem A 4(12):4440–4447

    Article  CAS  Google Scholar 

  41. Hou P, Wang X, Wang D, Song D, Shi X, Zhang L, Guo J, Zhang J (2014) A novel core-concentration gradient-shelled LiNi0.5Co0.2Mn0.3O2as high-performance cathode for lithium-ion batteries. RSC Adv 4(31):15923

    Article  CAS  Google Scholar 

  42. Lee S-W, Kim H, Kim M-S, Youn H-C, Kang K, Cho B-W, Roh KC, Kim K-B (2016) Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries. J Power Sources 315:261–268

    Article  CAS  Google Scholar 

  43. Boultif A, Louër D (2004) Powder pattern indexing with the dichotomy method. J Appl Crystallogr 37(5):724–731

    Article  CAS  Google Scholar 

  44. Wu Y, Cao C, Zhu Y, Li J, Wang L (2015) Cube-shaped hierarchical LiNi1/3Co1/3Mn1/3O2 with enhanced growth of nanocrystal planes as high-performance cathode materials for lithium-ion batteries. J Mater Chem A 3(30):15523–15528

    Article  CAS  Google Scholar 

  45. Ryu W-H, Kim D-H, Kang S-H, Kwon H-S (2013) Electrochemical properties of nanosized Li-rich layered oxide as positive electrode materials for Li-ion batteries. RSC Adv 3(22):8527

    Article  CAS  Google Scholar 

  46. Yan P, Xiao L, Zheng J, Zhou Y, He Y, Zu X, Mao SX, Xiao J, Gao F, Zhang J-G, Wang C-M (2015) Probing the degradation mechanism of Li2MnO3 cathode for Li-ion batteries. Chem Mater 27(3):975–982

    Article  CAS  Google Scholar 

  47. Ates MN, Mukerjee S, Abraham KM (2015) A high rate Li-rich layered MNC cathode material for lithium-ion batteries. RSC Adv 5(35):27375–27386

    Article  CAS  Google Scholar 

  48. Nayak PK, Grinblat J, Levi E, Markovsky B, Aurbach D (2016) Effect of cycling conditions on the electrochemical performance of high capacity Li and Mn-rich cathodes for Li-ion batteries. J Power Sources 318:9–17

    Article  CAS  Google Scholar 

  49. Wang R, He X, He L, Wang F, Xiao R, Gu L, Li H, Chen L (2013) Atomic structure of Li2MnO3after partial delithiation and re-lithiation. Adv Energy Mater 3(10):1358–1367

    Article  CAS  Google Scholar 

  50. Noh H-J, Youn S, Yoon CS, Sun Y-K (2013) Comparison of the structural and electrochemical properties of layered Li[Ni x Co y Mn z ]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130

    Article  CAS  Google Scholar 

  51. Li Q, Li G, Fu C, Luo D, Fan J, Xie D, Li L (2015) Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li–Mn–Ni–Co oxide. J Mater Chem A 3(19):10592–10602

    Article  CAS  Google Scholar 

  52. Park K-J, Lim B-B, Choi M-H, Jung H-G, Sun Y-K, Haro M, Vicente N, Bisquert J, Garcia-Belmonte G (2015) A high-capacity Li[Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries. J Mater Chem A 3(44):22183–22190

    Article  CAS  Google Scholar 

  53. Xue Q, Li J, Xu G, Zhou H, Wang X, Kang F (2014) In situ polyaniline modified cathode material li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries. J Mater Chem A 2(43):18613–18623

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixu Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezaal, M.A., Qu, L., Li, G. et al. High energy density and lofty thermal stability nickel-rich materials for positive electrode of lithium ion batteries. J Solid State Electrochem 21, 2219–2229 (2017). https://doi.org/10.1007/s10008-017-3564-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3564-9

Keywords

Navigation