Skip to main content

Advertisement

Log in

Preparation of biomass-activated porous carbons derived from torreya grandis shell for high-performance supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, we reported a novel biomass-derived porous carbon from torreya grandis shell for the first time by means of carbonization and KOH activation under N2. The pore structures were related to the ratio of KOH and activation temperature. N2 adsorption-desorption tests indicated that the sample of AC-800-3 has a maximum specific surface area of 2100.8 m2 g−1 and proper pore volume of 1.02 cm3 g−1. The electrode prepared with AC-800-3 realized a high capacitance of 290.5 F g−1 at 0.5 A g−1 and excellent rate capability of 62.6% in three-electrode system. The assembled symmetrical cell of AC-800-3 electrode exhibited a high energy density of 13.5 W h kg−1 at a power density of 360.1 W kg−1 in the potential range of 0–1.6 V and excellent cycling stability with 93.1% retention of the initial capacitance after 5000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huang CH, Zhang Q, Chou TC, Chen CM, Su DS, Doong RA (2012) Dimensional hierarchically ordered porous carbons with partially graphitic nanostructures for electrochemical capacitive energy storage. ChemSusChem 5:563–571

    Article  CAS  Google Scholar 

  2. You B, Jiang J, Fan S (2014) Three-dimensional hierarchically porous all-carbon foams for supercapacitor. ACS Appl Mater Interfaces 6:15302–15308

    Article  CAS  Google Scholar 

  3. Wang YG, Xiao YY (2013) Recent progress in supercapacitors: from materials design to system construction. Adv Mater 25:5336–5342

    Article  CAS  Google Scholar 

  4. Park H, Seo J, Kim M, Baeck SH, Shim SE (2015) Development of a carbon foam supercapacitor electrode from resorcinol–formaldehyde using a double templating method. Synth Met 199:121–127

    Article  CAS  Google Scholar 

  5. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330

    Article  CAS  Google Scholar 

  6. Dyatkin B, Presser V, Heon M, Lukatskaya MR, Beidaghi M, Gogotsi Y (2013) Development of a green supercapacitor composed entirely of environmentally friendly materials. ChemSusChem 6:2269–2280

    Article  CAS  Google Scholar 

  7. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJR, Shitta-Bey GO, Wilson G, Cruden A, Carter R (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3:1238–1251

    Article  CAS  Google Scholar 

  8. He SJ, Chen W (2015) Application of biomass-derived flexible carbon cloth coated with MnO 2 nanosheets in supercapacitors. J Power Sources 294:150–158

    Article  CAS  Google Scholar 

  9. Zhang JN, Zhang XL, Zhou YC, Guo SJ, Wang KX, Liang ZQ, Xu Q (2014) Nitrogen-doped hierarchical porous carbon nanowhisker ensembles on carbon nanofiber for high-performance supercapacitors. ACS Sustain Chem Eng 2:1525–1533

    Article  Google Scholar 

  10. Zhang L, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  11. Liu C, Yu Z, Neff D, Zhamu A, Jang B (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    Article  CAS  Google Scholar 

  12. Lei C, Amini N, Markoulidis F, Wilson P, Tennison S, Lekakou C (2013) Activated carbon from phenolic resin with controlled mesoporosity for an electric double-layer capacitor (EDLC). J Mater Chem A 1:6037–6042

    Article  CAS  Google Scholar 

  13. Chang B, Wang Y, Pei K, Yang S, Dong X (2014) ZnCl2-activated porous carbon spheres with high surface area and superior mesoporous structure as an efficient supercapacitor electrode. RSC Adv 4:40546–40552

    Article  CAS  Google Scholar 

  14. Shi H (1996) Activated carbons and double layer capacitance. Electrochim Acta 41:1633–1639

    Article  CAS  Google Scholar 

  15. Qu D, Shi HJ (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74:99–107

    Article  CAS  Google Scholar 

  16. Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Article  CAS  Google Scholar 

  17. Xu B, Wu F,R, Chen J, Cao GP, Chen S, Zhou ZM, Yang YS (2008) Highly mesoporous and high surface area carbon: a high capacitance electrode material for EDLCs with various electrolytes. Electrochem Commun 10:795–797

    Article  CAS  Google Scholar 

  18. Ruiz V, Blanco C, Santamaria R, Ramos-Fernandez JM, Martinez-Escandell M, Sepulveda-Escribano A, Rodriguez-Reinoso F (2009) An activated carbon monolith as an electrode material for supercapacitors. Carbon 47:195–200

    Article  CAS  Google Scholar 

  19. Jiang H, Yang L, Li C, Yan C, Lee PS, Ma J (2011) High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy Environ Sci 4:1813–1819

    Article  CAS  Google Scholar 

  20. Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323

    Article  CAS  Google Scholar 

  21. Madhu R, Sankar KV, Chen SM, Selvan RK (2014) Eco-friendly synthesis of activated carbon from dead mango leaves for the ultrahigh sensitive detection of toxic heavy metal ions and energy storage applications. RSC Adv 4:1225–1233

    Article  CAS  Google Scholar 

  22. Luo C, Zuo X, Wang L, Wang E, Song S, Wang J, Wang J, Fan C, Cao Y (2008) Flexible carbon nanotube− polymer composite films with high conductivity and superhydrophobicity made by solution process. Nano Lett 8:4454–4458

    Article  CAS  Google Scholar 

  23. Xu B, Wu F, Chen R, Cao G, Chen S, Yang Y (2010) Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte. J Power Sources 195:2118–2124

    Article  CAS  Google Scholar 

  24. Liu H, Zhu G (2007) The electrochemical capacitance of nanoporous carbons in aqueous and ionic liquids. J Power Sources 171:1054–1061

    Article  CAS  Google Scholar 

  25. Han SJ, Kim YH, Kim KS, Park SJ (2012) A study on high electrochemical capacitance of ion exchange resin-based activated carbons for supercapacitor. Curr Appl Phys 12:1039–1044

    Article  Google Scholar 

  26. Xu B, Chen Y, Wei G, Cao G, Zhang H, Yang Y (2010) Activated carbon with high capacitance prepared by NaOH activation for supercapacitors. Mater Chem Phys 124:504–509

    Article  CAS  Google Scholar 

  27. Hsu YK, Chen YC, Lin YG, Chen LC, Chen KH (2012) High-cell-voltage supercapacitor of carbon nanotube/carbon cloth operating in neutral aqueous solution. J Mater Chem 22:3383–3387

    Article  CAS  Google Scholar 

  28. Wang Y, Cao J, Zhou Y, Ouyang JH, Jia D, Guo L (2012) Ball-milled graphite as an electrode material for high voltage supercapacitor in neutral aqueous electrolyte. J Electrochem Soc 159:579–583

    Article  Google Scholar 

  29. Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309:275–278

    Article  CAS  Google Scholar 

  30. Hu B, Wang K, Wu L, Yu SH, Antonietti M, Titirici MM (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828

    Article  CAS  Google Scholar 

  31. Wang C, Ma D, Bao X (2008) Transformation of biomass into porous graphitic carbon nanostructures by microwave irradiation. J Phys Chem C 112:17596–17602

    Article  CAS  Google Scholar 

  32. White RJ, Budarin V, Luque R, Clark JH, Macquarrie DJ (2009) Tuneable porous carbonaceous materials from renewable resources. Chem Soc Rev 38:3401–3418

    Article  CAS  Google Scholar 

  33. Li Z, Zhang L, Amirkhiz BS, Tan X, Xu Z, Wang H, Olsen BC, C.MB H, Mitlin D (2012) Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv Energy Mater 2:431–437

    Article  CAS  Google Scholar 

  34. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  35. Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei BQ (2007) Supercapacitors from activated carbon derived from banana fibers. J Phys Chem C 111:7527–7531

    Article  CAS  Google Scholar 

  36. Wu X, Xing W, Florek J, Zhou J, Wang G, Zhuo S, Xue Q, Yan Z, Kleitz F (2014) On the origin of the high capacitance of carbon derived from seaweed with an apparently low surface area. J Mater Chem A 2:18998–19004

    Article  CAS  Google Scholar 

  37. Peng C, Lang JW, Xu S, Wang XL (2014) Oxygen-enriched activated carbons from pomelo peel in high energy density supercapacitors. RSC Adv 4:54662–54667

    Article  CAS  Google Scholar 

  38. Song S, Ma F, Wu G, Ma D, Geng W, Wan J (2015) Mo-doped LiV3O8 nanorod-assembled nanosheets as a high performance cathode material for lithium ion batteries. J Mater Chem A 3:3547–3558

    Article  CAS  Google Scholar 

  39. Li J, Wu Q (2015) Water bamboo-derived porous carbons as electrode materials for supercapacitors. New J Chem 39:3859–3864

    Article  CAS  Google Scholar 

  40. Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A 1:6462–6470

    Article  CAS  Google Scholar 

  41. Li ZJ, Lv W, Zhang C, Li BH, Kang FY, Yang QH (2015) A sheet-like porous carbon for high-rate supercapacitors produced by the carbonization of an eggplant. Carbon 92:11–14

    Article  CAS  Google Scholar 

  42. Xu JD, Gao QM, Zhang YL, Tan YL, Tian WQ, Zhu LH, Jiang L (2014) Preparing two-dimensional microporous carbon from pistachio nutshell with high areal capacitance as supercapacitor materials. Sci Rep 4:5545–5551

    Article  CAS  Google Scholar 

  43. He XJ, Li RC, Han JF, Yu MX, Wu MB (2013) Facile preparation of mesoporous carbons for supercapacitors by one-step microwave-assisted ZnCl2 activation. Mater Lett 94:158–160

    Article  CAS  Google Scholar 

  44. Li X, Xing W, Zhuo SP, Zhou J, Li F, Qiao SZ, Lu GQ (2011) Preparation of capacitor’s electrode from sunflower seed shell. Bioresour Technol 102:1118–1123

    Article  CAS  Google Scholar 

  45. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195

    Article  CAS  Google Scholar 

  46. Krishnamoorthy K, Kim GS, Kim SJ (2013) Graphene nanosheets: ultrasound assisted synthesis and characterization. Ultrason Sonochem 20:644–649

    Article  CAS  Google Scholar 

  47. Ma G, Guo D, Sun K, Peng H, Yang Q, Zhou X (2015) A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams. RSC Adv 5:65283–65296

    Article  CAS  Google Scholar 

  48. Ma G, Yang Q, Sun K, Peng H, Ran F, Zhao X, Lei Z (2015) Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresour Technol 197:137–142

    Article  CAS  Google Scholar 

  49. Zhu L, Gao Q, Tan Y, Tian W, Xu J, Yang K, Yang C (2015) Nitrogen and oxygen co-doped microporous carbons derived from the leaves of euonymus japonicas as high performance supercapacitor electrode material. Micropor Mesopor Mater 210:1–9

    Article  CAS  Google Scholar 

  50. Chen J, Zhang G, Luo B, Sun D, Yan X, Xue Q (2011) Surface amorphization and deoxygenation of graphene oxide paper by Ti ion implantation. Carbon 49:3141–3147

    Article  CAS  Google Scholar 

  51. Lang J, Yan X, Liu W, Wang R, Xue Q (2012) Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes. J Power Sources 204:220–229

    Article  CAS  Google Scholar 

  52. Wang JC, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry J Mater Chem 22:23710–23725

    Article  CAS  Google Scholar 

  53. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27

    Article  CAS  Google Scholar 

  54. Jokar E, Zad AI, Shahrokhian S (2015) Synthesis and characterization of NiCo2O4 nanorods for preparation of supercapacitor electrodes. J Solid State Electrochem 19:269–274

    Article  CAS  Google Scholar 

  55. Zhang J, Lee J (2014) Supercapacitor electrodes derived from carbon dioxide. ACS Sustain Chem Eng 2:735–740

    Article  CAS  Google Scholar 

  56. Wang Y, Chang B, Guan D, Dong X (2015) Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors. J Solid State Electrochem 19:1783–1791

    Article  CAS  Google Scholar 

  57. Wang KP, Teng H (2006) The performance of electric double layer capacitors using particulate porous carbons derived from PAN fiber and phenol-formaldehyde resin. Carbon 44:3218–3225

    Article  CAS  Google Scholar 

  58. Chun SE, Whitacre JF (2012) The evolution of electrochemical functionality of carbons derived from glucose during pyrolysis and activation. Electrochim Acta 60:392–400

    Article  CAS  Google Scholar 

  59. Li M, Xue J (2014) Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors. J Phys Chem C 118:2507–2517

    Article  CAS  Google Scholar 

  60. Wang Q, Yan J, Wang Y, Wei T, Zhang M, Jing X, Fan Z (2014) Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67:119–127

    Article  CAS  Google Scholar 

  61. Qu Q, Wang B, Yang L, Shi Y, Tian S, Wu Y (2008) Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes. Electrochem Commun 10:1652–1655

    Article  CAS  Google Scholar 

  62. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the 521 talent project of ZSTU and the National Undergraduate Training Program for Innovation and Entrepreneurship (201510338001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoping Dong or Fengna Xi.

Electronic supplementary material

ESM 1

(DOC 2375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, H., Lin, G., Wang, F. et al. Preparation of biomass-activated porous carbons derived from torreya grandis shell for high-performance supercapacitor. J Solid State Electrochem 21, 2241–2249 (2017). https://doi.org/10.1007/s10008-017-3562-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3562-y

Keywords

Navigation