Skip to main content
Log in

Time-varied synthesis of hierarchical ZnO microspheres and their applications in dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hierarchically nano-structured ZnO microspheres have been synthesized solvothermally at variable reaction times (6, 12, 36, and 48 h) by using ethylene glycol as a solvent, zinc acetate as precursor, and hexamethylene triamine (HMT) as structure directing agent. The study also focused on the mechanism of time-dependant growth of hierarchical ZnO microspheres and their deployment in dye-sensitized solar cells (DSSCs) as photoanode. Longer reaction times lead to formation of nearly spherical ZnO microspheres. The structural and morphological analysis reveals the formation of a wurtzite hexagonal crystalline structure having a microsphere-like morphology. ZnO hierarchical microspheres synthesized at different reaction times have been used as photoanode in DSSCs which show enhanced light-harvesting properties than the commercial ZnO powders. ZnO microspheres synthesized at 48 h show maximum current density and cell efficiency of 8.51 mA/cm2 and 3.31%, respectively. This enhancement in photovoltaic parameters could be due to highly porous microspheres which provide more specific surface area for dye loading, retardation of recombination, and better charge transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  2. Zhang Q, Cao G (2011) Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 6:91–109

    Article  CAS  Google Scholar 

  3. Hagfeldt A, Grätzel M (1995) Light-induced redox reactions in nanocrystalline systems. J Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  4. Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. J Inorg Chem 44:6841e51

    Article  Google Scholar 

  5. Zhang Q, Dandeneau CS, Zhou X, Cao G (2009) ZnO nanostructures for dye-sensitized solar cells. Adv Mater 21:4087–4108

  6. Xu F, Sun L (2011) Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells. Energy Environ Sci 4:818–841

    Article  CAS  Google Scholar 

  7. Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566–5572

    Article  CAS  Google Scholar 

  8. Chou TP, Zhang Q, Fryxell GE, Cao G (2007) Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv Mater 19:2588–2592

    Article  CAS  Google Scholar 

  9. Saito N, Haneda H (2011) Hierarchical structures of ZnO spherical particles synthesized solvothermally. Sci Technol Adv Mater 12:064707

    Article  Google Scholar 

  10. Ashoka S, Nagaraju G, Tharamani CN, Chandrapp GT (2009) Ethylene glycol assisted hydrothermal synthesis of flower like ZnO architectures. Mater Lett 63:873–876

    Article  CAS  Google Scholar 

  11. Wang LB, Fan YP, Bala H, Sun G (2011) Controllable synthesis of hierarchical ZnO microstructures via a hydrothermal route. Micro Nano Lett 6:741–744

    Article  CAS  Google Scholar 

  12. Xiao X (2009) Synthesis and characterization of 3D ZnO superstructures via a template-free hydrothermal method. Powder Technol 189:103–107

    Article  CAS  Google Scholar 

  13. Matsumoto K, Saito N, Mitate T, Hojo J, Inada M, Haneda H (2009) Surface polarity determination of ZnO spherical particles synthesized via solvothermal route. Cryst Growth Des 9:5014–5016

    Article  CAS  Google Scholar 

  14. Xiong J, Wang Y, Xue Q, Wu X (2011) Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem 13:900–904

    Article  CAS  Google Scholar 

  15. Chekin F, Ghasemi S (2014) Silver nanoparticles prepared in presence of ascorbic acid and gelatin, and their electrocatalytic application. Bull Mater Sci 37:1433–1437

    Article  CAS  Google Scholar 

  16. Sampath M, Vijayan R, Tamilarasu E, Tamilselvan A, Sengottuvelan B (2014) Green synthesis of novel jasmine bud-shaped copper nanoparticles. J Nanotechnol 2014:626523

    Article  Google Scholar 

  17. Ding K (2009) Hydrothermal synthesis of leaf-shaped ferric oxide particles onto multi-walled carbon nanotubes (MWCNTs) and its catalysis for the electrooxidation of ascorbic acid. Int J Electrochem Sci 4:943–953

    Google Scholar 

  18. Ihara T, Wagata H, Kogure T, Katsumata K, Okada K, Matsushita N (2014) Template-free solvothermal preparation of ZnO hollow microspheres covered with c planes. RSC Adv 4:25148–25154

    Article  CAS  Google Scholar 

  19. Govender K, Boyle DS, Kenway PB, O’Brien P (2004) Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J Mater Chem 14:2575–2591

    Article  CAS  Google Scholar 

  20. Parawee SKN, Tonto P, Mekasuwandumrong O, Pavarajarn V, Praserthdam P (2006) Solvothermal synthesis of ZnO with various aspect ratios using organic solvents. Cryst Growth Des 6:2446–2450

    Article  Google Scholar 

  21. Zhang AQ, Lu Zhang L, Sui L, Qian DJ, Chen M (2013) Morphology-controllable synthesis of ZnO nano−/microstructures by a solvothermal process in ethanol solution Cryst. Res Technol 11:947–955

    Article  Google Scholar 

  22. Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 117:2842–2845

    Article  Google Scholar 

  23. Tian S, Li N, Zeng D, Li H, Tang G, Pang A, Xie C, Zhao X (2015) Hierarchical ZnO hollow microspheres with exposed (001) facets as promising catalysts for the thermal decomposition of ammonium perchlorate. Cryst Eng Comm 17:8689–8696

    Article  CAS  Google Scholar 

  24. Hu P, Zhang X, Han N, Xiang WC, Cao YB, Yuan FL (2011) Solution-controlled self-assembly of ZnO nanorods into hollow microspheres. Cryst Growth Des 11:1520–1526

    Article  CAS  Google Scholar 

  25. Chauhan R, Shinde M, Kumar A, Gosavi S, Amalnerkar DP (2016) Hierarchical zinc oxide pomegranate and hollow sphere structures as efficient photoanodes for dye-sensitized solar cells. Microporous Mesoporous Mater 226:201–208

    Article  CAS  Google Scholar 

  26. Umar AA, Rahman MYA, Taslim R, Salleh MM, Oyama M (2012) Effect of the thickness of quasi one-dimensional zine oxide nanorods synthesized via multiple growth process under ammonia assisted hydrolysis technique on the performance of dye-sensitized solar cell. Int J Electrochem Sci 7:8384–8393

    CAS  Google Scholar 

  27. Pang S, Xie T, Zhang Y, Wei X, Yang M, Wang D, Du Z (2007) Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells. J Phys Chem C 111:18417–18422

    Article  CAS  Google Scholar 

  28. Lin J, Heo YU, Nattestad A, Sun Z, Wang L, Kim JH, Dou SX (2014) 3D hierarchical rutile TiO2 and metal-free organic sensitizer producing dye-sensitized solar cells 8.6% conversion efficiency. Sci Rep 4:5769

    Article  Google Scholar 

  29. Wang Q, Moser JE, Gratzel M (2005) Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J Phys Chem B 109:14945–14953

    Article  CAS  Google Scholar 

  30. Wu W, Yang J, Hua J, Tang J, Zhang L, Long Y (2010) Efficient and stable dye sensitized solar cells based on phenothiazine sensitizers with thiophene units. J Mater Chem 20:1772–1779

    Article  CAS  Google Scholar 

  31. Naveen KE, Jose R, Archana PS, Vijila C, Yusoff MM, Ramakrishna S (2012) High performance dye-sensitized solar cells with record open circuit voltage using tin oxide nano flowers developed by electrospinning. Energy Environ Sci 5:5401–5407

    Article  Google Scholar 

  32. Qian J, Liu P, Xiao Y, Jiang Y, Cao Y, Ai X, Yang H (2009) TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells. Adv Mater 21:3663–3667

    Article  CAS  Google Scholar 

  33. Kim YJ, Lee MH, Kim HJ, Lim G, Choi YS, Park NG, Kim LWI (2009) Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv Mater 21:3668–3673

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors RC and YW are grateful to the Department of Science and Technology, New Delhi, Project No. (IFA12-CH-34), for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratna Chauhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waghadkar, Y., Shinde, M., Ballal, R. et al. Time-varied synthesis of hierarchical ZnO microspheres and their applications in dye-sensitized solar cells. J Solid State Electrochem 21, 1797–1804 (2017). https://doi.org/10.1007/s10008-017-3554-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3554-y

Keywords

Navigation