Skip to main content
Log in

Photoelectrochemical and spectroscopical surface analysis of TiO2 nanorods/Ag nanoparticles toward organic carboxylic acids oxidation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The photoelectrochemical interaction of TiO2-based heterostructures was evaluated in an alkaline medium. These structures were fabricated by attaching silver nanoparticles (NPs) onto TiO2 nanorods (NRs), synthesized using hydrothermal methodology, by electrodeposition as a time function. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis analysis, and electrochemical techniques were used to characterize the synthesized materials. SEM analysis showed the formation of vertically oriented ca. 150-nm-diameter NRs, in turn constituted by 10-nm-diameter nanowires. On the other hand, the analysis of XRD indicated the formation of a TiO2 rutile phase. TEM images revealed ca. 5-nm-diameter silver nanoparticles attached to the TiO2 NR surface. The photoelectrochemical properties of the synthesized materials were evaluated in 0.1 M KOH using cyclic voltammetry, linear voltammetry, chronoamperometry, and electrochemical impedance spectroscopy (EIS) under dark and UV radiation at 365 nm. The photoelectrochemical oxidations of oxalic and formic acids were carried out under UV and visible irradiations on the material with the best photoeletrochemical performance. The obtained results demonstrated that the amount of silver increases both the light absorption and the faradic current during the oxygen evolution reaction as a result of an intrinsic-electric modification. During photoelectrochemical oxidation of the carboxylic acids, photocurrents of saturation were obtained, a condition suitable for photoelectrochemical cell (PEC) applications, representing 100% of photoexited electrons collected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  2. Pu YC, Wang GM, Chang KD, Ling YC, Lin YK, Fitzmorris BC, Liu CM, Lu XH, Tong YX, Zhang JZ, Hsu YJ, Li Y (2013) Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett 13:3817–3823

    Article  CAS  Google Scholar 

  3. Kim JY, Noh JH, Zhu K, Halverson AF, Neale NR, Park S, Hong KS, Frank A (2011) General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes: illumination geometry and transport properties. ACS Nano 5:2647–2656

    Article  CAS  Google Scholar 

  4. In SC, Chen ZB, Arnold JF, Dong RK, Pratap MR, Thomas FJ, Zheng XL (2011) Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett 11:4978–4984

    Article  Google Scholar 

  5. Li YB, Liu ZF, Wang Y, Liu ZC, Han JH, Ya J (2012) ZnO/CuInS2 core/shell heterojunction nanoarray for photoelectrochemical water splitting. Int J Hydrog Energy 37:15029–15037

    Article  CAS  Google Scholar 

  6. Wolcott A, Smith WA, Kuyke TR, Zhao YP, Zhang JZ (2009) Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv Funct Mater 19:1849–1856

    Article  CAS  Google Scholar 

  7. Wayer MT, Lin YJ, Yuan GB, Wang DW (2013) Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc Chem Res 46:1558–1566

    Article  Google Scholar 

  8. Chemelewski WD, Mabayoje O, Tang D, Rettie A, Mullins CB (2016) Bandgap engineering of Fe2O3 with Cr-application to photoelectrochemical oxidation. Phys Chem Chem Phys 18:1644–1648

    Article  CAS  Google Scholar 

  9. Dias P, Lopes T, Meda L, Andrade L, Mendes A (2016) Photoelectrochemical water splitting using WO3 photoanodes: the substrate and temperature roles. Phys Chem Chem Phys 18:5232–5243

    Article  CAS  Google Scholar 

  10. Han J, Zong X, Zhou X, Li C (2015) Cu2O/CuO photocathode with improved stability for photoelectrochemical water reduction. RSC Adv 5:10790–10794

    Article  CAS  Google Scholar 

  11. Michallon J, Bucci D, Morand A, Zanuccoli M, Consonni V, Kaminski-Cachopo A (2015) Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells. Nanotechnology 26:075401–075414

    Article  Google Scholar 

  12. Tobaldi DM, Leonardi SG, Pullar RC, Seabra MP, Neri G, Labrincha JA (2016) Sensing properties and photochromism of Ag-TiO2 nano-heterostructures. J Mater Chem A 4:9600–9613

    Article  CAS  Google Scholar 

  13. Zhang X, Liu D, Zhang L, Li W, Gao M, Ma W, Ren Y, Zeng Q, Niu Z, Zhou W, Xie S (2009) Synthesis of large-scale periodic ZnO nanorod arrays and its blue-shift of UV luminescence. J Mater Chem 19:962–969

    Article  CAS  Google Scholar 

  14. Cao C, Hu C, Shen W, Wang S, Tian Y, Wang X (2012) Synthesis and characterization of TiO2/CdS core-shell nanorod arrays and their photoelectrochemical property. J Alloys Comp 523:139–145

    Article  CAS  Google Scholar 

  15. Zhang X, Thavasi V, Mhaisalkar SG, Ramakrishna S (2012) Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials. Nano 4:1707–1716

    CAS  Google Scholar 

  16. Hu A, Wu F, Liu J, Jiang J, Ding R, Li X, Cheng C, Zhu Z, Huang X (2010) Density- and adhesion-controlled ZnO nanorod arrays on the ITO flexible substrates and their electrochromic performance. J Alloys Comp 507:261–266

    Article  CAS  Google Scholar 

  17. Chen K, Feng X, Hu R, Li Y, Xie K, Li Y, Gu H (2013) Effect of Ag nanoparticle size on the photoelectrochemical properties of Ag decorated TiO2 nanotube arrays. J Alloys Comp 554:72–79

    Article  CAS  Google Scholar 

  18. Kamat PV, Bang JH (2010) Solar cells by design: photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe. Adv Funct Mater 20:1970–1976

    Article  Google Scholar 

  19. Jiu J, Wang F, Adachi M (2004) Preparation of highly photocatalytic active nano-scale TiO2 by mixed template method. Mater Lett 58:3915–3919

    Article  CAS  Google Scholar 

  20. Wang G, Chen H, Zhang H, Yuan C, Lu Z, Wang G, Yang W (1998) TiO2/polypyrrole diodes prepared by electrochemical deposition of polypyrrole on microporous TiO2 film. Appl Surf Sci 135:97–100

    Article  CAS  Google Scholar 

  21. Yuan ZY, Su BL (2004) Titanium oxide nanotubes, nanofibers and nanowires. Colloid Surf A 241:173–183

    Article  CAS  Google Scholar 

  22. Chang JH, Ellis AV, Hsieh YH, Tung CH, Shen SY (2009) Electrocatalytic characterization and dye degradation of nano-TiO2 electrode films fabricated by CVD. Sci Total Environ 407:5914–5920

    Article  CAS  Google Scholar 

  23. Ahmadl MB, Murakami K (2012) Low temperature and normal pressure growth of rutile-phased TiO2 nanorods/nanoflowers for DSC application prepared by hydrothermal method. J Adv Res Phys 3:021208

    Google Scholar 

  24. Wongpisutpaisan N, Kahattha C, Vittayakorn N, Ruangphanit A, Pecharapa W (2013) Titanium dioxide nanostructures synthesized by sonochemical-hydrothermal process. J Metals Mater Miner 23:19–24

    CAS  Google Scholar 

  25. Ghaffaria M, Burak Cosarc M, Halil Yavuzc I, Ozenbasc M, Ali Okyay K (2012) Effect of Au nano-particles on TiO2 nanorod electrode in dye-sensitized solar cells. Electrochim Acta 76:446–452

    Article  Google Scholar 

  26. Wang GM, Wang HY, Ling YC, Tang YC, Yang XY, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Let 11:3026–3033

    Article  CAS  Google Scholar 

  27. Murphy AB, Barnes PRF, Randeniya LK, Plumb IC, Grey IE, Horne MD, Glasscock JA (2006) Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrog Energy 31:1999–2017

    Article  CAS  Google Scholar 

  28. Su F, Wang T, Lv R, Zhang J, Zhang P, Lu J, Gong J (2013) Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting. Nano 5:8727–9430

    Google Scholar 

  29. Kamimuraa S, Miyazakia T, Zhangc M, Lic Y, Tsubotaa T, Ohno T (2016) (Au@Ag)@Au double shell nanoparticles loaded on rutile TiO2 for photocatalytic decomposition of 2-propanol under visible light irradiation. Appl Catal B-Environ 180:255–262

    Article  Google Scholar 

  30. Zhou X, Liu G, Yu J, Fan W (2012) Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light. J Mater Chem 22:21337–21354

    Article  CAS  Google Scholar 

  31. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712

    Article  CAS  Google Scholar 

  32. Kong D, Yie Tan JZ, Yang F, Zeng J, Zhang X (2013) Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV-visible light photoreduction CO2 to CH4. Appl Surf Sci 277:105–110

    Article  CAS  Google Scholar 

  33. Sakthivel S, Shankar MV, Palanichamy M, Arabindoo B, Bahnemann DW, Murugesan V (2004) Enhancement of photocatalytic activity by metal deposition: characterization and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res 38:3001–3008

    Article  CAS  Google Scholar 

  34. Zhang H, Wang G, Chen D, Lv XJ, Li JH (2008) Tuning photoelectrochemical performances of Ag/TiO2 nanocomposites via reduction/oxidation of Ag. Chem Mater 20:6543–6549

    Article  CAS  Google Scholar 

  35. Paramasivam I, Macak JM, Ghicov A, Schmuki P (2007) Enhanced photochromism of Ag loaded self-organized TiO2 nanotube layers. Chem Phys Lett 445:233–237

    Article  CAS  Google Scholar 

  36. Xie K, Sun L, Wang C, Lai Y, Wang M, Chen H, Lin C (2010) Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochim Acta 55:7211–7218

    Article  CAS  Google Scholar 

  37. Chu S, Wada K, Inoue S, Todoroki S, Takahashi YK, Hono K (2002) Fabrication and characteristics of ordered Ni nanostructures on glass by anodization and direct current electrodeposition. Chem Mater 14:4595–4602

    Article  CAS  Google Scholar 

  38. Sandmann G, Dietz H, Plieth W (2000) Preparation of silver nanoparticles on ITO surfaces by a double-pulse method. J Electroanal Chem 491:78–86

    Article  CAS  Google Scholar 

  39. Ueda M, Dietz H, Anders A, Kneppe H, Meixner A, Plieth W (2002) Double-pulse technique as an electrochemical tool for controlling the preparation of metallic nanoparticles. Electrochim Acta 48:377–386

    Article  CAS  Google Scholar 

  40. Epifani M, Giannini C, Tapfer L, Vasanell L (2000) Sol–gel synthesis and characterization of Ag and Au nanoparticles in SiO2, TiO2, and ZrO2 thin films. J Am Ceram Soc 83(10):2385–2393

    Article  CAS  Google Scholar 

  41. Dai X, Compton RG (2006) Direct electrodeposition of gold nanoparticles onto indium tin oxide film coated glass: application to the detection of arsenic (III). Anal Sci 22:567–570

    Article  CAS  Google Scholar 

  42. Wang L, Mao W, Ni D, Di J, Wu Y, Tu Y (2008) Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor. Electrochem Commun 10:673–676

    Article  CAS  Google Scholar 

  43. Milchev A, Scharifker B, Hills G (1982) A potentiostatic study of the electrochemical nucleation of silver on vitreous carbon. J Electroanal Chem Interfacial Electrochem 132:277–289

    Article  CAS  Google Scholar 

  44. Gunawardena G, Hills G, Montenegro I (1985) Electrochemical nucleation: part IV. Electrodeposition of copper onto vitreous carbon. J Electroanal Chem Interfacial Electrochem 184:357–369

    Article  CAS  Google Scholar 

  45. Reichert R, Jusys Z, Jürgen Behm R (2014) A novel photoelectrochemical flow cell with online mass spectrometric detection: oxidation of formic acid on a nanocrystalline TiO2 electrode. Phys Chem Chem Phys 16:25076–25080

    Article  CAS  Google Scholar 

  46. Xiong Y, He C, An T, Zhu X, Karlsson HT (2003) Removal of formic acid from wastewater using three-phase three-dimensional electrode reactor. Water Air Soil Pollut 144:67–79

    Article  CAS  Google Scholar 

  47. Jeon H, Jeong B, Joo J, Lee J (2015) Electrocatalytic oxidation of formic acid: closing the gap between fundamental study and technical applications. Electrocatalysis 6:20–32

    Article  CAS  Google Scholar 

  48. Mojumder N, Sarker S, Abbas SA, Tian Z, Subramanian V (2014) Photoassisted enhancement of the electrocatalytic oxidation of formic acid on platinized TiO2 nanotubes. ACS Appl Mater Interfaces 6:5585–5594

    Article  CAS  Google Scholar 

  49. Morozova M, Kluson P, Krysa J, Gwenin C, Solcova O (2011) Oxalic acid sensors based on sol–gel nanostructured TiO2 films. J Sol-Gel Sci Technol 58:175–181

    Article  CAS  Google Scholar 

  50. Cheng-Hong L, Yao-Hui H, Hung-Ta C (2007) Study of oxalate mineralization using electrochemical oxidation technology. J Environ Eng Manage 17:345–349

    Google Scholar 

  51. Li Y, Yu H, Zhang C, Fua L, Li G, Shao Z, Yi B (2013) Enhancement of photoelectrochemical response by Au modified in TiO2 nanorods. Int J Hydrog Energ 38:13023–13030

    Article  CAS  Google Scholar 

  52. Perron H, Vandenborre J, Domain C, Drot R, Roques J, Simoni E, Ehrhardt JJ, Catalette H (2007) Combined investigation of water sorption on TiO2 rutile (110) single crystal face: XPS vs. periodic DFT. Surf Sci 601:518

    Article  CAS  Google Scholar 

  53. Sham TK, Lazarus MS (1979) X-ray photoelectron spectroscopy (XPS) studies of clean and hydrated TiO2 (rutile) surfaces. Chem Phys Lett 68:426–432

    Article  CAS  Google Scholar 

  54. Ghaffari M, Shannon M, Hui H, Tan OK, Irannejad A (2012) Preparation, surface state and band structure studies of SrTi(1−x) Fe(x)O(3−δ) (x=0-1) perovskite-type nano structure by X-ray and ultraviolet photoelectron spectroscopy. Surf Sci 606:670–677

    Article  CAS  Google Scholar 

  55. Kumar R, El-Shishtawy RM, Barakat MA (2016) Synthesis and characterization of Ag-Ag2O/TiO2@polypyrrole heterojunction for enhanced photocatalytic degradation of methylene blue. Catalysts 6:76

    Article  Google Scholar 

  56. Zhang H, Chen G (2009) Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method. Environ Sci Technol 43:2905–2910

    Article  CAS  Google Scholar 

  57. Ansari SA, Khan MM, Ansari MO, Lee J, Cho MH (2014) Visible light-driven photocatalytic and photoelectrochemical studies of Ag–SnO2 nanocomposites synthesized using an electrochemically active bio film. RSCA dv 4:26013–26021

    CAS  Google Scholar 

  58. Watts JF, Wolstenholme J (2003) An introduction to surface analysis by XPS and AES, Wiley Ltd

  59. Kalathil S, Khan MM, Ansari SA, Lee J, Cho MH (2013) Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active bio films and their visible light activity. Nano 5:6323–6326

    CAS  Google Scholar 

  60. Zhu Q, Peng Y, Lin L, Fan CM, Gao GQ, Wang RX, Xu AW (2014) Stable blue TiO2-x nanoparticles for efficient visible light photocatalysts. J Mater Chem A 2:4429–4437

    Article  CAS  Google Scholar 

  61. Pan X, Yang MQ, Fu X, Zhang N, Xu YJ (2013) Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nano 5:3601–3614

    CAS  Google Scholar 

  62. Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH (2014a) Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2:637–644

    Article  CAS  Google Scholar 

  63. Chen XB, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photo-catalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    Article  CAS  Google Scholar 

  64. Ansari SA, Khan MM, Ansari MO, Lee J, Cho MH (2013) Biogenic synthesis, photocatalytic and photoelectrochemical performance of Ag-ZnO nanocomposite. J Phys Chem C 117:27023–27030

    Article  CAS  Google Scholar 

  65. Ansari SA, Khan MM, Ansari MO, Cho MH (2015) Silver nanoparticles and defect-induced visible light photocatalytic and photoelectrochemical performance of Ag@m-TiO2 nanocomposite. Sol Energ Mat Sol C 141:162–170

    Article  CAS  Google Scholar 

  66. Bard AJ, Faulkner LR (2000) Electrochemical methods—fundamentals and applications. Wiley, New York

    Google Scholar 

  67. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to wave guiding. Nat Photonics 1:641–648

    Article  CAS  Google Scholar 

  68. Wu JL, Chen FC, Hsiao YS, Chien FC, Chen P, Kuo CH, Huang MH, Hsu CS (2011) Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 5:959–967

    Article  CAS  Google Scholar 

  69. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857

    Article  CAS  Google Scholar 

  70. Khan MM, Ansari SA, Ansari MO, Min BK, Lee J, Cho MH (2014b) Biogenic fabrication of Au@CeO2 nanocomposite with enhanced visible light activity. J Phys Chem C 118:9477–9484

    Article  CAS  Google Scholar 

  71. Parker RA (1961) Lorentz corrections in rutile. Phys Rev 124:1719–1722

    Article  CAS  Google Scholar 

  72. Leng WH, Zhang Z, Zhang JQ, Cao CN (2005) Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. J Phys Chem B 109:15008–15023

    Article  CAS  Google Scholar 

  73. Zhao L, Fang L, Dong W, Zheng FG, Shen MR (2013) Effect of charge compensation on the photoelectrochemical properties of Ho-doped SrTiO3 films. Appl Phys Lett 102:121905–121905

    Article  Google Scholar 

  74. Jakob M, Levanon H (2003) Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level. Nano Lett 3:353–358

    Article  CAS  Google Scholar 

  75. Sun T, Wang Y, Al-Mamun M, Zhang H, Liua P, Zhao H (2015) Photoelectrochemical determination of intrinsic kinetics of photoelectrocatalysis processes at {001}faceted anatase TiO2 photoanodes. RSC Adv 5:12860–12865

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by CONACYT-CNPq 174247, ICyTDF 325/2011, SIP-IPN and BEIFI-IPN, SNI, and CONACYT scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Manzo-Robledo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina-Flores, J.V., Arce-Estrada, E.M., Corrales-Luna, M. et al. Photoelectrochemical and spectroscopical surface analysis of TiO2 nanorods/Ag nanoparticles toward organic carboxylic acids oxidation. J Solid State Electrochem 21, 1805–1816 (2017). https://doi.org/10.1007/s10008-017-3553-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3553-z

Keywords

Navigation