Skip to main content
Log in

Photoelectrochemical properties of thin films on titanium obtained by thermal, electrochemical, or sol-gel method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The photosensitivity of the titanium dioxide films on titanium substrate formed by the electrochemical, thermal, or sol-gel method was compared under the same conditions. The surface topologies of the samples were characterized by the atomic-force microscopy. It was found that the comparable increases of the sample photopotentials were observed either after the introducing of F¯-containing component into the anodizing solution or after the annealing of pure titanium at 500 °C. The cumulative effect of the anodic oxidation and further heat treatment of titanium on IPCE of Ti|TiO2 system was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grimes CA, Varghese OK, Ranjan S (2008) Light, water, hydrogen: the solar generation of hydrogen by water photoelectrolysis. Springer, New York

    Book  Google Scholar 

  2. Gratzel M (2001) Sol-gel processed TiO2 films for photovoltaic applications. J Sol-Gel Sci and Technol 22:7–13

    Article  CAS  Google Scholar 

  3. Arakelyan VM, Shakhnazaryan GE, Khachaturyan EA (2005) Photo-electrochemical transformation of solar energy TiO2 thin films. International Scientific J For Alternative Energy and Ecology 11:38–41

    Google Scholar 

  4. Bak T, Nowotny J, Nowotny MK, Sheppard LR (2009) Dynamics of TiO2-based photoelectrochemical cell. Ionics 15:671–679

    Article  CAS  Google Scholar 

  5. Wang Y, Hao Y, Cheng H, Ma J, Xu B (1999) The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+- doped TiO2 electrode. J Mater Sci 34:2773–2779

    Article  CAS  Google Scholar 

  6. Sankapal BR, Sartale SD, Lux-Steiner MC (2006) Chemical and electrochemical synthesis of nanosized TiO2 anatase for large-area photon conversion. C R Chimie 9:702–707

    Article  CAS  Google Scholar 

  7. Hu MZ, Lai P, Bhuiyan MS, Tsouris C, Gu B, Paranthaman MP, Gabitto J, Harrison L (2009) Synthesis and characterization of anodized titanium-oxide nanotube arrays. J Mater Sci 44:2820–2827

    Article  CAS  Google Scholar 

  8. Sreekantan S, Hazan R, Lockman Z (2009) Photoactivity of anatase-rutile TiO2 nanotubes formed by anodization method. Thin Solid Films 518:16–21

    Article  CAS  Google Scholar 

  9. Srimuangmaka K, Niyomwasb S (2011) Effects of voltage and addition of water on photocatalytic activity of TiO2 nanotubes prepared by anodization method. Energy Procedia 9:435–439

    Article  Google Scholar 

  10. Butail G, Ganesan PG, Teki R, Mahima R, Ravishankar N, Duquette DJ, Ramanath G (2011) Branched titania nanotubes through anodization voltage control. Thin Solid Films 520:235–238

    Article  CAS  Google Scholar 

  11. Mintsouli I, Philippidis N, Poulios I, Sotiropoulos S (2006) Photoelectrochemical characterisation of thermal and particulate titanium dioxide electrodes. J Appl Electrochem 36:463–474

    Article  CAS  Google Scholar 

  12. Pleskov YV (1990) Fotoelektrochimicheskoe preobrazovanie solnechnoj energii. Chimiya, Moscow

    Google Scholar 

  13. Davydov AD (2001) Breakdown of valve metal passivity induced by aggressive anions. Electrochim Acta 46:3777–3781

    Article  CAS  Google Scholar 

  14. Bajrachnyj BI, Andryushchenko FK (1985) Elektrohimiya ventil'nyh metallov. Vishcha shkola, Har'kov

  15. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939

    Article  CAS  Google Scholar 

  16. Glukhov LM, Bukhan’ko NG, Davydov AD (2008) Growth of anodic oxide films on titanium-nickel alloys and breakdown of alloy passivity with halide ions. Russ J of Electrochem 44:332–337

    Article  CAS  Google Scholar 

  17. Vera ML, Alterach MA, Rosenberger MR, Lamas DG, Schvezov CE, Ares AE (2014) Characterization of TiO2 nanofilms obtained by sol-gel and anodic oxidation. Nanomater Nanotechnol 4:4–10

    Article  Google Scholar 

  18. Vinogradov AV, Agafonov AV, Vinogradov VV (2011) Studies on the effect of the stabilizer activity on the structure and properties of titania-based hybrid films. RussChemBull 60:1862–1870

    CAS  Google Scholar 

  19. Vinogradov AV, Agafonov AV, Vinogradov VV (2009) Sol-gel synthesis of titanium dioxide based films possessing highly ordered channel structure. J Mendeleev Comm 19:340–341

    Article  CAS  Google Scholar 

  20. Vinogradov AV, Agafonov AV, Vinogradov VV (2010) Study of surfaces of TiO2 based nanostructured films obtained under action of various templates. Protection of Metals and Physical Chemistry of Surfaces 46:555–558

    Article  CAS  Google Scholar 

  21. Grishina EP, Eremenko DV, Tsyplakova LN, Kyrov VN, Nevsky OI (1990) Electrochemical behavior of systems Ag-H2SO4-Ta2O5 and Cu-H2SO4-Ta2O5 at different conditions of the polarization. Izv Vyssh Uchebn Zaved Khim Khim Tekhnol 33:65–71

    CAS  Google Scholar 

  22. Kuromoto NK, Simão RA, Soares GA (2008) Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages. Mater Charact 58:114–121

    Article  Google Scholar 

  23. Van de Krol R, Schoonman J (2008) Photo-electrochemical production of hydrogen. In: Hanjali K, van de Krol R (eds) Sustainable energy technologies. Springer, Dordrecht

  24. Macak JM, Tsuchiya H, Ghicov A, Schmuki P (2005) Dye-sensitized anodic TiO2 nanotubes. Electrochem Commun 7:1133–1137

    Article  CAS  Google Scholar 

  25. YanBiao L, BaoXue Z, BiTao X, Jing B, LongHai L (2007) TiO2 nanotube arrays and TiO2-nanotube-array based dye-sensitized solar cell. Chin Sci Bull 52:1585–1589

    Article  Google Scholar 

  26. Bauer S, Kleber S, Schmuki P (2006) TiO2 nanotubes: tailoring the geometry in H3PO4/HF electrolytes. Electrochem Commun 8:1321–1325

    Article  CAS  Google Scholar 

  27. Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P (2005) Smooth anodic TiO2 nanotubes. Angew Chem Int Ed 44:7463–7465

    Article  CAS  Google Scholar 

  28. Yung L (1967) Anode Oxide Films. Energia, Leningrad

    Google Scholar 

  29. Sosnov EA, Malkov AA, Malygin AA (2011) Temperature effect on polymorphic transformations in silica matrix-titania coating systems. Inorg Mater 47:563–569

    Google Scholar 

  30. Khoroshikh VM, Belous VA (2009) Titanium dioxide films for photocatalysis and medicine. Fizicheskaja ingeneria poverchnosti 7:223–238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.O. Kudryakova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishina, E., Kudryakova, N. & Agafonov, A. Photoelectrochemical properties of thin films on titanium obtained by thermal, electrochemical, or sol-gel method. J Solid State Electrochem 21, 1777–1784 (2017). https://doi.org/10.1007/s10008-017-3542-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3542-2

Keywords

Navigation