Iron-carbon nanohybrid particles as environmentally benign electrode for supercapacitor


In this work, we report the synthesis and electrode applications of iron-carbon nanohybrid particles prepared by carbonization of a nanocomposite of FeOOH nanoneedles and melamine-formaldehyde resin. The chemical composition and microstructure of the material have been characterized using ICP-AES, FT-IR, XRD, FESEM, TEM and XPS. The supercapacitor properties of the MF-Fe-C are studied in detail. A thorough comparison of the supercapacitor performances of MF-Fe-C and bare MF-C has been carried out through detailed electrochemical characterisations employing both two and three-electrode techniques. The nanohybrid showed an enhanced energy density of 127.75 WhKg−1, specific capacitance of ∼408 F g−1 at 1 mVs−1 scan rate, and excellent cyclic stability even after 1000 charge-discharge cycles, making it an intriguing material for high energy density supercapacitor devices.

Carbonized Melamine-Formaldehyde-FeOOH composites as an intriguing material for supercapacitor application

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Kamat PV (2011) Graphene-based nanoassemblies for energy conversion. The Journal of Physical Chemistry Letters 2(3):242–251

    CAS  Article  Google Scholar 

  2. 2.

    Lightcap IV, Kamat PV (2013) Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing. Acc Chem Res 46(10):2235–2243

    CAS  Article  Google Scholar 

  3. 3.

    Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4(3):668–674

    CAS  Article  Google Scholar 

  4. 4.

    Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217)

  5. 5.

    Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    CAS  Article  Google Scholar 

  6. 6.

    Salunkhe RR, Lee Y-H, Chang K-H, Li J-M, Simon P, Tang J, Torad NL, Hu C-C, Yamauchi Y (2014) Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications. Chem Eur J 20(43):13838–13852

    CAS  Article  Google Scholar 

  7. 7.

    Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19(3):438–447

    CAS  Article  Google Scholar 

  8. 8.

    Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11(6):2472–2477

    CAS  Article  Google Scholar 

  9. 9.

    Wang D-W, Li F, Chen Z-G, Lu GQ, Cheng H-M (2008) Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem Mater 20(22):7195–7200

    CAS  Article  Google Scholar 

  10. 10.

    Zhao X, Zhang Q, Chen C-M, Zhang B, Reiche S, Wang A, Zhang T, Schlögl R, Sheng Su D (2012) Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor. Nano Energy 1(4):624–630

    CAS  Article  Google Scholar 

  11. 11.

    Wen Y, Wang B, Huang C, Wang L, Hulicova-Jurcakova D (2015) Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chem Eur J 21(1):80–85

    CAS  Article  Google Scholar 

  12. 12.

    W-j Z, Zhang J, Xue T, D-d Z, H-l L (2008) Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors. J Mater Chem 18(8):905–910

    Article  Google Scholar 

  13. 13.

    Woo S-W, Dokko K, Nakano H, Kanamura K (2008) Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors. J Mater Chem 18(14):1674–1680

    CAS  Article  Google Scholar 

  14. 14.

    Xia X, Tu J, Mai Y, Chen R, Wang X, Gu C, Zhao X (2011) Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chem Eur J 17(39):10898–10905

    CAS  Article  Google Scholar 

  15. 15.

    Wang H, Cui L-F, Yang Y, Sanchez Casalongue H, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4− graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132(40):13978–13980

    CAS  Article  Google Scholar 

  16. 16.

    Ciszewski M, Mianowski A, Szatkowski P, Nawrat G, Adamek J (2015) Reduced graphene oxide–bismuth oxide composite as electrode material for supercapacitors. Ionics 21(2):557–563

    CAS  Article  Google Scholar 

  17. 17.

    Li B, Cao H, Shao J, Li G, Qu M, Yin G (2011) Co3O4@ graphene composites as anode materials for high-performance lithium ion batteries. Inorg Chem 50(5):1628–1632

    CAS  Article  Google Scholar 

  18. 18.

    Mishra AK, Ramaprabhu S (2011) Functionalized graphene-based nanocomposites for supercapacitor application. J Phys Chem C 115(29):14006–14013

    CAS  Article  Google Scholar 

  19. 19.

    Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326

    CAS  Article  Google Scholar 

  20. 20.

    Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324(5928):768–771

    CAS  Article  Google Scholar 

  21. 21.

    Wang K, Shi X, Lu A, Ma X, Zhang Z, Lu Y, Wang H (2015) High nitrogen-doped carbon/Mn3O4 hybrids synthesized from nitrogen-rich coordination polymer particles as supercapacitor electrodes. Dalton Trans 44(1):151–157

    CAS  Article  Google Scholar 

  22. 22.

    Wu Y, Li Y, Qin L, Yang F, Wu D (2013) Monodispersed or narrow-dispersed melamine-formaldehyde resin polymer colloidal spheres: preparation, size-control, modification, bioconjugation and particle formation mechanism. J Mater Chem B 1(2):204–212

    CAS  Article  Google Scholar 

  23. 23.

    Vernekar D, Jagadeesan D (2015) Tunable acid-base bifunctional catalytic activity of FeOOH in an orthogonal tandem reaction. Catalysis Science & Technology 5(8):4029–4038

    CAS  Article  Google Scholar 

  24. 24.

    Jacobs H, Rechenbach D, Zachwieja U (1995) Structure determination of γ′-Fe4N and ϵ-Fe3N. J Alloys Compd 227(1):10–17

    CAS  Article  Google Scholar 

  25. 25.

    Wang L, Lu X, Han C, Lu R, Yang S, Song X (2014) Electrospun hollow cage-like α-Fe2O3 microspheres: synthesis, formation mechanism, and morphology-preserved conversion to Fe nanostructures. CrystEngComm 16(46):10618–10623

    CAS  Article  Google Scholar 

  26. 26.

    Li W, Wu J, Higgins DC, Choi J-Y, Chen Z (2012) Determination of iron active sites in pyrolyzed iron-based catalysts for the oxygen reduction reaction. ACS Catal 2(12):2761–2768

    CAS  Article  Google Scholar 

  27. 27.

    Luo M, Dou Y, Kang H, Ma Y, Ding X, Liang B, Ma B, Li L (2015) A novel interlocked Prussian blue/reduced graphene oxide nanocomposites as high-performance supercapacitor electrodes. J Solid State Electrochem 19(6):1621–1631

    CAS  Article  Google Scholar 

  28. 28.

    Khoh W-H, Hong J-D (2013) Layer-by-layer self-assembly of ultrathin multilayer films composed of magnetite/reduced graphene oxide bilayers for supercapacitor application. Colloids Surf A Physicochem Eng Asp 436:104–112

    CAS  Article  Google Scholar 

  29. 29.

    Yan M, Yao Y, Wen J, Fu W, Long L, Wang M, Liao X, Yin G, Huang Z, Chen X (2015) A facile method to synthesize FexCy/C composite as negative electrode with high capacitance for supercapacitor. J Alloys Compd 641:170–175

    CAS  Article  Google Scholar 

  30. 30.

    Wang Z, Ma C, Wang H, Liu Z, Hao Z (2013) Facilely synthesized Fe2O3–graphene nanocomposite as novel electrode materials for supercapacitors with high performance. J Alloys Compd 552:486–491

    CAS  Article  Google Scholar 

  31. 31.

    Vermisoglou E, Devlin E, Giannakopoulou T, Romanos G, Boukos N, Psycharis V, Lei C, Lekakou C, Petridis D, Trapalis C (2014) Reduced graphene oxide/iron carbide nanocomposites for magnetic and supercapacitor applications. J Alloys Compd 590:102–109

    CAS  Article  Google Scholar 

  32. 32.

    Wang K, Li L, Zhang T, Liu Z (2014) Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability. Energy 70:612–617

    CAS  Article  Google Scholar 

  33. 33.

    Paek E, Pak AJ, Kweon KE, Hwang GS (2013) On the origin of the enhanced supercapacitor performance of nitrogen-doped graphene. J Phys Chem C 117(11):5610–5616

    CAS  Article  Google Scholar 

Download references


DJ acknowledges the financial support from the Science and Engineering Research Board (RJN-112/2012) and Board of Research in Nuclear Sciences (37(2)/14/21/2015/BRNS). DV acknowledges the DST Inspire Doctoral Fellowship (IF150027). CSR would like to thank DST (Government of India) for the Ramanujan fellowship (Grant No. SR/S2/RJN-21/2012). This work was supported by the DST-SERB Fast-Track Young Scientist (Grant No. SB/FTP/PS-065/2013), UGC-UKIERI Thematic Awards (Grant No. UGC-2013-14/005), and BRNS-DAE (Grant No. 37(3)/14/48/2014-BRNS/1502). Also, part of this work is supported by the Indo-US Science and Technology Forum (IUSSTF) through a joint INDO-US centre grant and Ministry of Human Resources Development (MHRD), India, through a center of excellence grant. The authors acknowledge the electron microscopy facility at Centre for Materials Characterization in CSIR – National Chemical Laboratory.

Author information



Corresponding authors

Correspondence to Dinesh Jagadeesan or Chandra Sekhar Rout.

Electronic supplementary material


(DOC 1162 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ratha, S., Vernekar, D., Sivaneri, K. et al. Iron-carbon nanohybrid particles as environmentally benign electrode for supercapacitor. J Solid State Electrochem 21, 1665–1674 (2017).

Download citation


  • Electrochemistry
  • Nanohybrid
  • Supercapacitor
  • Energy density