Skip to main content

Structural modification and band gap tailoring of zinc oxide thin films using copper impurities

Abstract

The doping effects of Cu on structural, morphological and optical properties of ZnO thin films and their PEC properties have been investigated via chemical bath deposition (CBD) technique at 353 K bath temperature and a pH of 11.5 with post-deposition annealing at 673 K. The concentration of Cu in ZnO varied between 1 and 5 at.%. X-ray diffraction analysis revealed that the synthesized Cu-doped ZnO (CZO) thin films were highly crystalline with hexagonal wurtzite structure, showing strong preferential growth along the c-axis for 3 at.% Cu concentration. A shift in angular peak position of 0.545o in 2θ towards higher angle was observed for CZO films which is an indication of effective substitution of Cu atoms on Zn lattice. Crystallite sizes were enhanced from 28 to 32 nm in the (002) crystal plane. Optical analysis indicates a red shift in the absorption band edge up to 450 nm upon Cu doping. Transmittance characteristics increased slightly from 80 to 90% in the visible range at optimum Cu concentration of 3 at.%. Optical energy band gap was found to decrease from 3.03 eV for undoped ZnO to 2.7 eV upon Cu doping. The morphological structures of the CZO thin films were strongly influenced by Cu impurities and its concentration. The water contact angles showed strong dependence on Cu impurities in ZnO and decreased considerably from 71.3 to 15.2°. The synthesized CZO films showed enhanced photoelectrochemical properties, giving a short circuit current (I sc) of 0.098 mAcm−2 and open circuit voltage (V oc) of 796 mV for an optimum Cu concentration of 3 at.% with photoconversion efficiency of 0.062% and fill factor of 63%.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Babikier M, Wang D, Wang J, Li Q, Sun J, Yan Y, Yu Q, Jiao S (2014) Cu-doped ZnO nanorod arrays: the effects of copper precursor and concentration. Nanoscale Res Lett 9:199–207

    Article  Google Scholar 

  2. Hsu CH, Chen LC, Zhang X (2014) Effect of the Cu source on optical properties of CuZnO films deposited by ultrasonic spraying. Mater 7:1261–1270

    CAS  Article  Google Scholar 

  3. Thaweesaeng N, Supankit S, Techidheera W, Pecharap W (2013) Structure properties of as-synthesized Cu-doped ZnO nanopowder synthesized by co-precipitation method. Ener Procedia 34:682–689

    CAS  Article  Google Scholar 

  4. Mukhtar M, Munisa L, Saleh R (2012) Co-precipitation synthesis and characterization of nanocrystalline zinc oxide particles doped with Cu2+ ions. Mater Sc & Appl 3:543–551

    Google Scholar 

  5. Shinde VR, Lokhande CD, Mane RS, Hwan HS (2005) Hydrophobic and textured ZnO films deposited by chemical bath deposition: annealing effect. Appl Surf Sc 245:407–419

    CAS  Article  Google Scholar 

  6. Drici A, Djeteli G, Tchangbedgi G, Deruiche H, Jondo K, Napo K, Barnede JC, Ouro-Djobom S, Gbagba M (2004) Structured ZnO thin films grown by chemical bath deposition for photovoltaic applications. Phys Stat Sol (a) 201:1528–1535

    CAS  Article  Google Scholar 

  7. Li Y, Gong J, Deng Y (2010) Hierarchical structured ZnO nanorods on ZnO nanofibers and their photoresponse to UV and visible lights. Sensor Actuat A: Phys 158:176–187

    CAS  Article  Google Scholar 

  8. Lao CS, Liu J, Gao P, Zhang L, Davidovic D, Tummala R, Wang ZL (2006) ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across Au electrodes. Nano Lett 6:263–275

    CAS  Article  Google Scholar 

  9. Fortunato E, Gonçalves A, Pimentel A, Barquinha P, Gonçalves G, Pereira L, Ferreira I, Martins R (2009) Zinc oxide, a multifunctional material: from material to device applications. Appl Phys A Mater Sci Process 96:197–200

    CAS  Article  Google Scholar 

  10. Chow L, Lupan O, Chai G, Khallaf H, Ono L, Roldan K, Cuenya B, Tiginyanu IM, Ursak VV, Sontea V, Schulte A (2013) Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response. Sensors Actuators A 189:399–408

    CAS  Article  Google Scholar 

  11. Choi MY, Choi D, Jin MJ, Kim I, Kim SH, Choi JY, Lee SY, Kim JM, Kim SW (2009) Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv Mater 21:2185–2189

    CAS  Article  Google Scholar 

  12. Roy MS, Balraju P, Kumar M, Sharma GD (2008) Dye-sensitized solar cell based on Rose Bengal dye and nanocrystalline TiO2. Sol Energ Mat Sol 92:909–913

    CAS  Article  Google Scholar 

  13. Snure M, Tiwari A (2008) Band-gap engineering of Zn1<xGaxO nanopowders: synthesis, structural and optical characterizations. J Appl Phys 104:073707–073705

    Article  Google Scholar 

  14. Wang X, Song C, Geng K, Zeng F, Pan F (2007) Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering. Appl Surf Sc 253:6905–6690

    CAS  Article  Google Scholar 

  15. Gao D, Xue D, Xu Y, Yan Z, Zhang Z (2009) Synthesis and magnetic properties of Cu-doped ZnO nanowire arrays. Electrochim Acta 54:2392–2395

    CAS  Article  Google Scholar 

  16. Singhal S, Kaur J, Namgyal T, Sharma R (2012) Cu-doped ZnO nanoparticles: synthesis, structural and electrical properties. Physica B 407:1223–1226

    CAS  Article  Google Scholar 

  17. Fu M, Li Y, Wu S, Lu P, Liu J, Dong F (2011) Sol-gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Appl Surf Sc 258:1587–1591

    CAS  Article  Google Scholar 

  18. Ma H, Yue L, Yu C, Dong X, Zhang X, Xue M, Zhang X, Fu Y (2012) Synthesis, characterization and photocatalytic activity of Cu-doped Zn/ZnO photocatalyst with carbon modification. J Mater Chem 22:23780–23788

    CAS  Article  Google Scholar 

  19. Lupan O, Pauporté T, Viana B, Aschehoug P (2011) Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications. Electrochim Acta 56:10543–10549

    CAS  Article  Google Scholar 

  20. Muthukumaran S, Gopalakrishnan R (2012) Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt Mater 34:1946–1953

    CAS  Article  Google Scholar 

  21. Chauhan R, Kumar A, Chaudhary RP (2010) Synthesis and characterization of copper doped ZnO nanoparticles. J Chem Pharm Res 2:178–183

    CAS  Google Scholar 

  22. Yao PC, Hang ST, Lin YS, Yen WT, Lin YC (2010) Optical and electrical characteristics of Al-doped ZnO thin films prepared by aqueous phase deposition. Appl Surf Sc 257:1441–1448

    CAS  Article  Google Scholar 

  23. Lee SH, Han SH, Jung HS, Shin H, Lee J, Noh JH, Lee S, Cho IS, Lee JK, Kim J, Shin H (2010) Al-doped ZnO thin film: a new transparent conducting layer for ZnO nanowire-based dye-sensitized solar cells. J Phys Chem C 114:7185–7189

    CAS  Article  Google Scholar 

  24. Herng TS, Lau SP, Yu SF, Yang HY, Wang L, Tanemura M, Chen JS (2007) Magnetic anisotropy in the ferromagnetic Cu-doped ZnO nanoneedles. Appl. Phy Lett 90:032509–032517

    Google Scholar 

  25. Lupan O, Pauporte T, Le Bahers T, Viana B, Ciofini I (2011) Wavelength emission tuning of ZnO nanowires-based light emitting diodes by Cu-doping: experimental and computational insights. Ad FunctMater 21:3564–3572

    CAS  Google Scholar 

  26. Mkawi EM, Ibrahim K, Ali MKM, Farrukh MA, Mohamed AS (2015) The effect of dopant concentration on properties of transparent conducting Al-doped ZnO thin films for efficient Cu2ZnSnS4 thin-film solar cells prepared by electrodeposition method. Appl Nanosci 3:56–67

    Google Scholar 

  27. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A 32:751–767

    Article  Google Scholar 

  28. Kulkarni SB, Patil UM, Salunkhea RR, Joshi SS, Lokhande CD (2011) Temperature impact on morphological evolution of ZnO and its consequent effect on physico-chemical properties. J Alloys and Comp 509:3486–3492

    CAS  Article  Google Scholar 

  29. Thakur S, Sharma N, Varkia A, Kumar J (2014) Structural and optical properties of copper doped ZnO nanoparticles and thin films. Adv in Appl Sc Res 5:18–24

    CAS  Google Scholar 

  30. Mani GK, Rayappan JBB (2014) Influence of copper doping on structural, optical and sensing properties of spray deposited zinc oxide thin films. J Alloys and Comp 582:414–419

    CAS  Article  Google Scholar 

  31. Kakiuchi K, Saito M, Fujihara S (2008) Fabrication of ZnO films consisting of densely accumulated mesoporous nanosheets and their dye-sensitized solar cell performance. Thin Solid Films 516:2026–2035

    CAS  Article  Google Scholar 

  32. Zhou Z, Kato K, Komaki T, Yoshino M, Yukawa H, Morinagaand M, Morita K (2003) Electrical conductivity of Cu-doped ZnO and its change with hydrogen implantation. JElectroceramics 11:73–79

    CAS  Article  Google Scholar 

  33. Jongnavakit P, Amornpitoksuk P, Suwanboon S, Ndiege N (2012) Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method. Appl Surf Sc 258:8192–8198

    CAS  Article  Google Scholar 

  34. Dom R, Lijin RB, Kim HG, Borse PH (2013) Enhanced solar photoelectrochemical conversion efficiency of ZnO:cu electrodes for water-splitting application. Inter J Photoenergy 2013:9–20

    Article  Google Scholar 

  35. Khallaf H, Chai G, Lupan O, Heinrich H, Park S, Schulte A, Chow L (2009) Investigation of chemical bath deposition of ZnO thin films using six different complexing agents. J Phys D Appl Phys 42:135304–135312

    Article  Google Scholar 

  36. Hao Y, Yang M, Li W, Qiao X, Zhang L, Cai S (2000) A photoelectrochemical solar cell based on ZnO/dye/polypyrrole film electrode as photoanode. Sol Ener Mater Sol Cells 60:349–359

    CAS  Article  Google Scholar 

  37. Kim JD, Honma I (2004) Synthesis and proton conducting properties of zirconia bridged hydrocarbon/phosphotungstic acid hybrid materials. Electro Chim Acta 49:3179–3318

    CAS  Article  Google Scholar 

  38. Shrestha SP, Ghimire R, Nakarmi JJ, Kim YS, Shrestha S, Park CY, Boo JH (2010) Properties of ZnO:Al films prepared by spin coating of aged precursor solution. Bull. Korean Chem Soc 31:112–115

    CAS  Article  Google Scholar 

  39. Bhattacharya C, Datta J (2005) Studies on anodic corrosion of the electroplated CdSe in aqueous and non-aqueous media for photoelectrochemical cells and characterization of the electrode/electrolyte interface. Mater Chem Phys 89:170–183

    CAS  Article  Google Scholar 

  40. Sun RD, Nakajima A, Fujushima A, Watanabe T, Hashimoto K (2001) Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J Phys Chem B 105:1984–1991

    CAS  Article  Google Scholar 

  41. Sun H, Luo M, Weng W, Cheng K, Du P, Shen G, Han G (2008) Room-temperature preparation of ZnO M nanosheets grown on Si substrates by a seed-layer assisted solution route. Nanotechnology 19:125603–125610

    Article  Google Scholar 

  42. Shinde NM, Dubal DP, Dhawale DS, Lokhande CD, Kim JH, Moon JH (2012) Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application. Mater Res Bull 47:302–307

    CAS  Article  Google Scholar 

  43. Lokhande CD, Pawar SH (1984) Electrochemical photovoltaic cells for solar energy conversion. Mater Chem Phys 11:201–277

    CAS  Article  Google Scholar 

  44. Luther JM, Jain PK, Ewers T, Alivisatos A (2011) UV-VIS and photoluminescence spectroscopy for nanomaterials characterization. Nat Mater 10:361–366

    CAS  Article  Google Scholar 

  45. Scregg J, Dale P, Peter L, Zopp G, Forbes L (2008) New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material. Phys. Status Solidi 245:1772–1776

    Article  Google Scholar 

  46. Shinde NM, Deshmukh PR, Patil SV, Lokhande CD (2013) Aqueous chemical growth of Cu2ZnSnS4 (CZTS) thin films: air annealing and photoelectrochemical properties. Mater Res Bull 48:1760–1766

    CAS  Article  Google Scholar 

  47. Bulakhe RN, Shinde NM, Thorat RD, Nikam SS, Lokhande CD (2013) Deposition of copper iodide thin films by chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) methods. Cur Appl Phy 13:1661–1667

    Article  Google Scholar 

  48. Tyona MD, Osuji RU, Ezema FI, Jambure SB, Lokhande CD (2015) Highly efficient natural dye-sensitized photoelectrochemical solar cells based on Cu-doped zinc oxide thin film electrodes. Adv Appl Sc Res 6:7–20

  49. Tyona MD, Osuji RU, Ezema FI, Jambure SB,Lokhande CD (2016) Enhanced photoelectrochemicalsolar cells based on natural dye-sensitized Al-doped zinc oxide electrodes. Adv Appl Sc Res 7:18–31

Download references

Acknowledgements

The Thin film laboratory, Department of Physics, Shivaji University, Kolhapur is greatly acknowledged for their firm support for this work. We thank Engr. Emeka Okwuosa for generous sponsorship of April 2014 and July, 2016 conference/workshops on applications of nanotechnology to energy, health & Environment conference and for providing some research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrumun David Tyona.

Additional information

Highlights

• All CZO films were polycrystalline with hexagonal wurtzite structure

• The intensities of the crystallographic peaks were very sensitive to Cu concentration in ZnO

• Surface morphology of the films was affected by concentration of the dopant

• Morphology varied from nanodendrites to vertically aligned nanorods

• Bandgap showed strong sensitivity to Cu concentration in ZnO

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tyona, M.D., Osuji, R., Asogwa, P. et al. Structural modification and band gap tailoring of zinc oxide thin films using copper impurities. J Solid State Electrochem 21, 2629–2638 (2017). https://doi.org/10.1007/s10008-017-3533-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3533-3

Keywords

  • Cu impurities
  • Cu-doped ZnO
  • Bandgap
  • Surface morphology
  • Chemical bath deposition
  • Hexagonal wurtzite structure
  • Nanorods