Skip to main content
Log in

Photocatalytic decolourization of brilliant green and methylene blue by TiO2/CdS nanorods

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The present work narrates the photocatalytic behaviour of TiO2/CdS nanocomposites for the degradation of the organic dyes brilliant green and methylene blue under solar light irradiation. For this process, TiO2 loaded with different concentrations of CdS was prepared through a sol–gel approach and the prepared products were studied for their structural, optical and morphological characteristics. The degradation details of the studied composites reveal that TiO2 loaded with an optimum level of CdS is known to have outstanding catalytic activity due to its higher BET surface area, rod-like morphology and low charge transfer resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 23:837–838

    Google Scholar 

  2. Wang L, Liu S, Wang Z, Zhou Y, Qin Y, Zhong Lin W (2016) Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano 10:2636–2643

    Article  CAS  Google Scholar 

  3. Radhika NP, Rosilda S, Rita K, Ahmad U (2016) Recent advances in nano-photocatalysts for organic synthesis. Arab J of Chem. doi:10.1016/j.arabjc.2016.07.007

    Google Scholar 

  4. Oluwafunmilola O, Mercedes Maroto-Valer M (2015) Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J of Photochem and Photobio C: Photochem Rev 24:16–42

    Article  Google Scholar 

  5. Slamet HW, Ezza P, Soleh K, Jarnuzi G (2005) Photocatalytic reduction of CO2 on copper-doped titania catalysts prepared by improved-impregnation method. Cataly Comm 6:313–319

    Article  CAS  Google Scholar 

  6. Naoya M, Daisuke S, Toshiki T, Teruhisa O (2013) Photocatalytic reduction of carbon dioxide over shape-controlled titanium(IV) oxide nanoparticles with co-catalyst loading. Curr Org Chem 17:2449–2453

    Article  Google Scholar 

  7. Osamu I, Chieko I, Yuji S, Takashi I (1993) Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J of Photochem and Photobiology A: Chem 72:269–271

    Article  Google Scholar 

  8. Solymosi F, Tombacz I (1994) Photocatalytic reaction of H2O + CO2 over pure and doped Rh/TiO2. Catal Lett 27:61–65

    Article  CAS  Google Scholar 

  9. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  10. Qianyi Z, Ying L, Erik A, Marija G (2011) Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Appl Catal A: Gen l 400:195–202

    Article  Google Scholar 

  11. Doong RA, Chen CH, Maithreepala RA, Chang SM (2001) The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions. Water Res 35:2873–2880

    Article  CAS  Google Scholar 

  12. Kang MG, Han HE, Kim KJ (1999) Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2. J Photochem Photobiol A Chem 125:119–125

    Article  CAS  Google Scholar 

  13. So WW, Kim KJ, Moon SJ (2004) Photo-production of hydrogen over the CdS-TiO2 nano-composite particulate films treated with TiCl4. Int J Hydro Energy 29:229–234

    Article  CAS  Google Scholar 

  14. De GC, Roy AM, Bhattacharya SS (1996) Effect of n-Si on the photocatalytic production of hydrogen by Pt loaded CdS and CdS/ZnS catalyst. Int J Hydro Energy 21:19–23

    Article  Google Scholar 

  15. Natalita M, Xingdong W, Rachel A (2015) High-throughput synthesis and screening of titania-based photocatalysts. ACS Comb Sci 17:548–569

    Article  Google Scholar 

  16. Yao BH, Zheng HL, Yang LQ (2007) The preparation of CdS/TiO2/zeeospheres composite photocatalysts and the study on the degradation of highly effective chlorine. Spectros and Spec Analysis 27:1010–1014

    CAS  Google Scholar 

  17. Li L, Wang LL, Hu TY (2014) Preparation of highly photocatalyticactive CdS/TiO2 nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis. J of Solid State Chem 218:81–89

    Article  CAS  Google Scholar 

  18. Panpan Z, Zhanggao L, Yu X, Jing F, Jiangwei X (2017) Studies on facile synthesis and properties of mesoporous CdS/TiO2 composite for photocatalysis applications. J of Alloys and Compounds 692:170–177

    Article  Google Scholar 

  19. Jian-wen S, Xiaoxia Y, Hao-Jie C, Xu Z, Ming-Lai F, Shaohua C, Lianzhou W (2012) Low-temperature synthesis of CdS/TiO2 composite photocatalysts: influence of synthetic procedure on photocatalytic activity under visible light. J of Molecular Cata A: Chem 356:53–60

    Article  Google Scholar 

  20. Elena R, Gary H (2013) Effective bandgap lowering of CdS deposited by successive ionic layer adsorption and reaction. J Phys Chem C 117:1611–1620

    Article  Google Scholar 

  21. Wen-Tao S, Yuan Y, Hua-Yong P, Xian-Feng G, Qing C, Lian-Mao P (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. American Chem Society 130:1124–1125

    Article  Google Scholar 

  22. Ding S, Yin X, Lü X, Wang Y, Huang F (2012) One-step high-temperature solvothermal synthesis of TiO2/sulfide nanocomposite spheres and their solar visible-light applications. ACS Appl Mater & Interfaces 4:306–311

    Article  CAS  Google Scholar 

  23. Chao X, Ting W, Guidong Y, Bolun Y, Shujiang D (2014) A facile strategy for the synthesis of hierarchical TiO2/CdS hollow sphere heterostructures with excellent visible light activity. J Mater Chem A 2:7674–7679

    Article  Google Scholar 

  24. Abbas A, Abdollah S (2016) One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high-performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation. J of Coll Inter Sci 479:43–54

    Article  Google Scholar 

  25. Shuli B, Huanying L, Yujiang G, Shengtao J (2011) The enhanced photocatalytic activity of CdS/TiO2 nanocomposites by controlling CdS dispersion on TiO2 nanotubes. Appl Surf Sci 257:6406–6409

    Article  Google Scholar 

  26. Xin L, Ting X, Changhui X, James M, Xiaobo C (2014) Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. Catal Today 225:64–73

    Article  Google Scholar 

  27. Liangpeng W, Yulan Z, Xinjun L, Chaoping C (2014) CdS nanorod arrays with TiO2 nano-coating for improved photostability and photocatalytic activity. Phys Chem Chem Phys 16:15339–15345

    Article  Google Scholar 

  28. Luo J, Ma L, He T, Ng CF, Wang S (2012) TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties. J Phys Chem C 116:11956–11963

    Article  CAS  Google Scholar 

  29. Gao P, Liu J, Zhang T (2012) Hierarchical TiO2/CdS “spindle-like” composite with high photodegradation and antibacterial capability under visible light irradiation. J of Hazar Mater 229–230:209–216

    Article  Google Scholar 

  30. Jin-nouchi Y, Naya S (2010) Quantum-dot-sensitized solar cell using a photoanode prepared by in situ photodeposition of CdS on nanocrystalline TiO2 films. J of Phys l Chem C 114:16837–16842

    Article  CAS  Google Scholar 

  31. Shao Z, Zhu W, Li Z (2011) One-step fabrication of CdS nanoparticle-sensitized TiO2 nanotube arrays via electrodeposition. J of Phys Chem C 116:2438–2442

    Article  Google Scholar 

  32. Maurya A, Chauhan P (2011) Structural and optical characterization of CdS/TiO2 nanocomposite. Mater Chara 62:382–390

    Article  CAS  Google Scholar 

  33. He D, Chen M, Teng F (2012) Enhanced cyclability of CdS/TiO2 photocatalyst by stable interface structure. Superlatt and Micro 51:799–808

    Article  CAS  Google Scholar 

  34. Prasannalakshmi P, Shanmugam N, Kannadasan N, Sathishkumar K (2015) Influence of thermal annealing on the photo catalytic properties of TiO2 nanoparticles under solar irradiation. J of Mater Sci: Mater in Electro 26:7987–7996

    CAS  Google Scholar 

  35. Narjes G, Mohammad H (2012) Sono-synthesis of core–shell nanocrystal (CdS/TiO2 ) without surfactant. Ultra Sonochem 19:1070–1078

    Article  Google Scholar 

  36. Siqi L, Nan Z, Zi-Rong T, Yi-Jun X (2012) Synthesis of one-dimensional CdS@TiO2 core–shell nanocomposites photocatalyst for selective redox: the dual role of TiO2 Shell. ACS Appl Mater Interfaces 4:6378–6385

    Article  Google Scholar 

  37. Anuja D, Subhendu K, Subhadra C (2007) Synthesis and optical and electrical properties of CdS/ZnS core/shell nanorods. J Phys Chem C 111:17260–17264

    Article  Google Scholar 

  38. Borchert H, Shevchenk EV, Robert A, Weller H (2005) Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles. Langmuir 21:1931–1936

    Article  CAS  Google Scholar 

  39. Salari M, Hamed Aboutalebi S, Chidembo AT (2012) Enhancement of the electrochemical capacitance of TiO2 nanotube arrays through controlled phase transformation of anatase to rutile. Phys chem chem Phy 14:4770–4779

    Article  CAS  Google Scholar 

  40. Mali SS, Desai SK, Dalavi DS, Betty CA, Bhosale PN, Patil PS (2011) CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application. Photochem Photobiol Sci 10:1652–1658

    Article  CAS  Google Scholar 

  41. Sonalika V, Amitava P, Ashok Kumar G (2010) CdS@TiO2 and ZnS@TiO2 core–shell nanocomposites: synthesis and optical properties. Colloids and Surfaces A: Physicochem Eng Aspects 363:130–134

    Article  Google Scholar 

  42. Thirumala Rao G, Babu B, Joyce Stella R (2015) Spectral investigation on undoped and Cu2+ doped ZnO-CdS composite nanopowers. Spectrochimica Acta part A:molecular and Biomole Spectro 139:86–93

    Article  CAS  Google Scholar 

  43. Kernazhitsky L, Shymanovska V, Gavrilko T (2014) Room temperature photoluminescence of anatase and rutile TiO2 powders. J of Lumin 146:199–204

    Article  CAS  Google Scholar 

  44. Huimin J, Hua X, Yan H, Yiwen T, Lizhi Z (2007) TiO2@CdS core–shell nanorods films: fabrication and dramatically enhanced photoelectrochemical properties. Electrochem Comm 9:354–360

    Article  Google Scholar 

  45. Gui-Sheng L, Die-Qing Z, Jimmy C (2009) A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2. Environ Sci Technol 43:7079–7085

    Article  Google Scholar 

  46. Li F, Yu Y, Cui H (2013) Label-free electrochemiluminescence immunosensor for cardiac troponin I using luminol functionalized gold nanoparticles as a sensing platform. Analyst 138:1844–1850

    Article  CAS  Google Scholar 

  47. Zhendong W, Yue L, Shenglian L, Chengbin L, Deshui M, Mingyue D, Guisheng Z (2014) Hierarchical heterostructure of CdS nanoparticles sensitized electrospun TiO2 nanofibers with enhanced photocatalytic activity. Sep Purif Technol 122:60–66

    Article  Google Scholar 

  48. Yanmei L, Yi G, Yanhong L, Xingfu Z (2016) Fabrication of Cd-doped TiO2 nanorod arrays and photovoltaic property in Perovskite solar cell. Electrochem Acta 200:29–36

    Article  Google Scholar 

  49. Sachin A, Dipali S, Abhishek C, Gil M, Jae Cheol S, Pramod S, Jin Hyeok K (2016) Chemical synthesis of CdS on to TiO2 nanorods for quantum dot sensitized solar cells. Opt Mater 58:46–50

    Article  Google Scholar 

  50. Le W, Hongwei W, Yingju F (2009) Synthesis, optical properties, and photocatalytic activity of one-dimensional CdS@ZnS core-shell nanocomposites. Nanoscale Res Lett 4:558–564

    Article  Google Scholar 

  51. Hongwei W, Le W, Zhipeng L, Shouqing N, Quanqin Z (2011) Synthesis and photocatalytic activity of one dimensional CdS@TiO2 core-shell hetero-structures. Nano-Micro Lett 3:6–11

    Article  Google Scholar 

  52. Yi X, Ghafar A, SeungHwa Y, SungOh C (2010) Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity. ACS appl Mater & interfaces 2:2910–2914

    Article  Google Scholar 

  53. Zhang C, Yi-Jun X (2013) Ultrathin TiO2 layer coated-CdS spheres core–shell nanocomposite with enhanced visible-light photoactivity. ACS Appl Mater Interfaces 5:13353–13363

    Article  Google Scholar 

  54. Sandipan B, Sher Bahadur R, Hark Jin K, Wan In L (2014) Novel coupled structures of FeWO4/TiO2 and FeWO4/TiO2/CdS designed for highly efficient visible-light photocatalysis. ACS Appl Mater Interfaces 6:9654–9663

    Article  Google Scholar 

  55. Masashi F, Kazuki N, Musashi F (2009) Photodeposition of CdS quantum dots on TiO2: preparation, characterization, and reaction mechanism. J Phys Chem C 113:16711–16716

    Article  Google Scholar 

  56. Wenhao D, Feng P, Leilei X, Minrui Z (2015) Facile synthesis of CdS@TiO2 core-shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation. Appl Surf Sci 349:278–286

    Google Scholar 

  57. Mohammad Reza G, Cao-Thang D, François B (2015) Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale:78187–78208

  58. Kuo CY (2009) Prevenient dye-degradation mechanisms using UV/TiO2/carbon nanotubes process. J of Hazar Mater 163:239–244

    Article  CAS  Google Scholar 

  59. Lin CJ, Yu YH (2009) Free-standing TiO2 nanotube array films sensitized with CdS as highly active solar light-driven photocatalysts. Appl Catal B: Envir 93:119–125

    Article  CAS  Google Scholar 

  60. Chen C, MaW ZJ (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39:4206–4219

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. V. Ramaswamy, Professor and Head, Department of Physics, Annamalai University, for providing necessary facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Shanmugam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasannalakshmi, P., Shanmugam, N. Photocatalytic decolourization of brilliant green and methylene blue by TiO2/CdS nanorods. J Solid State Electrochem 21, 1751–1766 (2017). https://doi.org/10.1007/s10008-017-3522-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3522-6

Keywords

Navigation