Skip to main content

Simple chemical route for nanorod-like cobalt oxide films for electrochemical energy storage applications

Abstract

We used a simple chemical synthesis route to deposit nanorod-like cobalt oxide thin films on different substrates such as stainless steel (ss), indium tin oxide (ITO), and microscopic glass slides. The morphology of the films show that the films were uniformly spread having a nanorod-like structure with the length of the nanorods shortened on ss substrates. The electrochemical properties of the films deposited at different time intervals were studied using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS). The film deposited after 20 cycles on ss gave the highest specific capacity of 67.6 mAh g−1 and volumetric capacity of 123 mAh cm−3 at a scan rate 5 mV s−1 in comparison to 62.0 mAh g−1 and 113 mAh cm−3 obtained, respectively, for its counterpart on ITO. The film electrode deposited after 20 cycles on ITO gave the best rate capability and excellent cyclability with no depreciation after 2000 charge–discharge cycles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Xu R, Wang J, Li Q, Sun G, Wang E, Li S, Gu J, Ju M (2009) Porous cobalt oxide (Co3O4) nanorods: facile syntheses, optical property and application in lithium-ion batteries. J Solid State Chem 182:3177–3182

    CAS  Article  Google Scholar 

  2. Xia X, Zhang Y, Chao D, Guan C, Zhang Y, Li L, Ge X, Bacho IM, Tu J, Fan HJ (2014) Solution synthesis of metal oxides for electrochemical energy storage application. Nanoscale 6:5008–5048

    CAS  Article  Google Scholar 

  3. Faraji S, Ani FN (2014) Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors: a review. J Power Sources 26:338–360

    Article  Google Scholar 

  4. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

    CAS  Article  Google Scholar 

  5. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    CAS  Article  Google Scholar 

  6. Reddy MV, Prithvi G, Loh KP, Chowdari BVR (2014) Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries. ACS Appl Mater Interfaces 6:680–690

    CAS  Article  Google Scholar 

  7. Reddy MV, Beichen Z, Loh KP, Chowdari BVR (2013) Facile synthesis of Co3O4 by molten salt method and its Li-storage performance. CrystEngComm 15:3568–3574

    CAS  Article  Google Scholar 

  8. Jagadale AD, Kumbhar VS, Bulakhe RN, Lokhande CD (2014) Influence of electrodeposition modes on the super capacitive performance of Co3O4 electrodes. Energy 64:234–241

    CAS  Article  Google Scholar 

  9. Srinivasan V, Weidner JW (2002) Capacitance studies of cobalt oxide films formed via electrochemical precipitation. J Power Sources 108:15–20

    CAS  Article  Google Scholar 

  10. Kapica R, Redzynia W, Kozanecki M, Chehimi MM, Sielski J, Kuberski SM, Tyczkowski J (2013) Plasma deposition and characterization of copper-doped cobalt oxide nanocatalysts. MATER SCI MEDZG 19(3):270–276

    Google Scholar 

  11. Xu J, Gao L, Cao J, Wang W, Chen Z (2010) Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim Acta 56(2):732–736

    CAS  Article  Google Scholar 

  12. Dong X-C, Xu H, Wang X-W, Huang Y-X, Chan-Park MB, Zhang H, Wang L-H, Huang W, Chen P (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6(4):3206–3213

    CAS  Article  Google Scholar 

  13. Hao W, Chen S, Cai Y, Zhang L, Li Z, Zhang S (2014) Three-dimensional hierarchical pompon-like Co3O4 porous spheres for high-performance lithium-ion batteries. J Mater Chem A 2:13801–13804

    CAS  Article  Google Scholar 

  14. Yanguang L, Bing T, Yiying W (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8(1):265–270

    Article  Google Scholar 

  15. Vlad A, Singh N, Rolland J, Melinte S, Ajayan PM, Gohy JF (2014) Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci Rep 4:4315

    CAS  Article  Google Scholar 

  16. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 4:797–828

    Article  Google Scholar 

  17. Jagadale AD, Kumbhar VS, Lokhande CD (2013) Supercapacitive activities of potentiodynamically deposited nanoflakes of cobalt oxide (Co3O4) thin film electrode. J Colloid Interface Sci 406:225–230

    CAS  Article  Google Scholar 

  18. Amria A, Duan XF, Yin C-Y, Jiang Z-T, Rahman MM, Pryor T (2013) Solar absorptance of copper–cobalt oxide thin film coatings with nano-size, grain-like morphology: optimization and synchrotron radiation XPS studies. Appl Surf Sci 275:127–135

    Article  Google Scholar 

  19. Petitto SC, Marsh EM, Carson GA, Langell MA (2008) Cobalt oxide surface chemistry: the interaction of CoO (1 0 0), Co3O4 (1 1 0), and Co3O4 (1 1 1) with oxygen and water. J Mol Catal A Chem 281(1–2):49–58

    CAS  Article  Google Scholar 

  20. Spataru N, Terashima C, Tokuhiro K, Sutanto I, Tryk DA, Park S-M, Fujishima A (2003) Electrochemical behavior of cobalt oxide films deposited at conductive diamond electrodes. J Electrochem Soc 150(7):E337–E341

    CAS  Article  Google Scholar 

  21. Shaikh JS, Pawar RC, Moholkar AV, Kim JH, Patil PS (2011) CuO–PAA hybrid films: chemical synthesis and supercapacitor behaviour. Appl Surf Sci 257(9):4389–4397

    CAS  Article  Google Scholar 

  22. Nwanya AC, Obi D, Ozoemena KI, Osuji RU, Awada C, Ruediger A, Maaza M, Rosei F, Ezema FI (2016) Facile synthesis of nanosheet-like CuO film and its potential application as a high-performance pseudocapacitor electrode. Electrochim Acta 198:220–230

    CAS  Article  Google Scholar 

  23. Aldama I, Barranco V, Centeno TA, Ibanez J, Rojo JM (2016) Composite electrodes made from carbon cloth as supercapacitor material and manganese and cobalt oxide as battery one. J Electrochem Soc 163(5):A758–A765

    CAS  Article  Google Scholar 

  24. Nwanya AC, Offiah SU, Amaechi CI, Agbo S, Ezugwu SC, Sone BT, Osuji RU, Maaza M, Ezema FI (2015) Electrochromic and electrochemical supercapacitive properties of room temperature PVP capped Ni(OH)2/NiO thin films. Electrochimic Acta 171:128–141

    CAS  Article  Google Scholar 

  25. Chougule MA, Pawar SG, Godse PR, Sakhare RD, Sen S, Patil VB (2012) Sol–gel derived Co3O4 thin films: effect of annealing on structural, morphological and optoelectronic properties. J Mater Sci Mater Electron 23:772–778

    CAS  Article  Google Scholar 

  26. Chidembo AT, Ozoemena KI, Agboola BO, Gupta V, Wildgoose GG, Compton RG (2010) Nickel(II) tetra-aminophthalocyanine modified MWCNTs as potential nanocomposite materials for the development of supercapacitors. Energy Environ Sci 3:228–236

    CAS  Article  Google Scholar 

  27. Ko Y, Shin D, Koo B, Lee SW, Yoon W-S, Cho J (2015) Ultrathin supercapacitor electrodes with high volumetric capacitance and stability using direct covalent bonding between pseudocapacitive nanoparticles and conducting materials. Nano Energy 12:612–625

    CAS  Article  Google Scholar 

  28. Amaechi IC, Nwanya AC, Obi D, Ezugwu SC, Udounwa AE, Ekwealor ABC, Osuji RU, Maaza M, Ezema FI (2016) Structural characterization and electrochemical properties of cerium–vanadium (Ce–V) mixed oxide films synthesized by chemical route. Ceram Int 42:3518–3524

    CAS  Article  Google Scholar 

  29. Qu QT, Wang B, Yang LC, Shi Y, Tian S, Wu YP (2008) Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes. Electrochem Commun 10:1652–1655

    CAS  Article  Google Scholar 

  30. Gund GS, Dubal DP, Patil BH, Shinde SS, Lokhande CD (2013) Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochim Acta 92:205–215

    CAS  Article  Google Scholar 

  31. Dubal DP, Lee SH, Kim JG, Kim WB, Lokhande CD (2012) Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J Mater Chem 22:3044–3052

    CAS  Article  Google Scholar 

  32. Raju K, Ozoemena KI (2015) Hierarchical one-dimensional ammonium nickel phosphate microrods for high-performance pseudocapacitors. Sci Rep 5:17629

    CAS  Article  Google Scholar 

  33. Nwanya AC, Amaechi CI, Udounwa AE, Osuji RU, Maaza M, Ezema FI (2015) Complex impedance and conductivity of agar-based ion-conducting polymer electrolytes. Appl Phys A Mater Sci Process 119:387–396

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The UNN group thanks the US Army Research Laboratory for the financial support given to this research (under Contract number W911NF-12-1-0588). The UNN Research Group is also grateful for the financial support given by Engr Emeka Okwuosa the MD Oilserv Group Of Companies Ltd. and for sponsoring her Nano conferences of 2014 and 2016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Assumpta C Nwanya or Fabian I. Ezema.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nwanya, A.C., Obi, D., Osuji, R.U. et al. Simple chemical route for nanorod-like cobalt oxide films for electrochemical energy storage applications. J Solid State Electrochem 21, 2567–2576 (2017). https://doi.org/10.1007/s10008-017-3520-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3520-8

Keywords

  • Cobalt oxide
  • Specific capacitance
  • Nanorod-like
  • SILAR
  • Stainless steel