Skip to main content

Advertisement

Log in

Controlled synthesis of hierarchical CoMn2O4 nanostructures for flexible all-solid-state battery-type electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Design and control over the growth of novel nanomaterial for flexible electrode are significant and practical for the study of portable energy storage devices. Herein, the flexible all-solid-state charge-storage devices assembled by the hierarchical CoMn2O4 nanoneedle array on the Ni foam electrode have been designed and manufactured. The CoMn2O4 electrode is prepared via a hydrothermal process and subsequent annealing treatment. The CoMn2O4 electrode has a high-power battery-type behavior with a capacity of 223 mAh g−1 at a discharge current density of 1 A g−1 in a three-electrode system. When applied in the flexible all-solid-state charge-storage device, it displays a satisfactory capacity of 46 mAh g−1 at a discharge current density of 1 A g−1, an energy density of 23.29 Wh kg−1 at a power density of 0.5 kW kg−1 and a power density of 4 kW kg−1 at an energy density of 12 Wh kg−1. About 80.3% of the initial capacity is achieved after 5000 charge/discharge cycles at a current density of 4 A g−1, which shows the excellent cycling stability of the device. This work demonstrates the potential application of the CoMn2O4 nanoneedle array electrode for high-performance flexible charge-storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Luo YS, Luo JS, Jiang J, Zhou WW, Yang HP, Qi XY, Zhang H, Fan HJ, Yu DYW, Li CM, Yu T (2012) Seed-assisted synthesis of highly ordered TiO2@a-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ Sci 5:6559–6566

    Article  CAS  Google Scholar 

  2. Sun WW, Liu HQ, Peng T, Liu YM, Bai GX, Kong S, Guo SS, Li MY, Zhao XZ (2015) Hierarchical donut-shaped LiMn2O4 as an advanced cathode material for lithium-ion batteries with excellent rate capability and long cycle life. J Mater Chem A 3:8165–8170

    Article  CAS  Google Scholar 

  3. Qiu KW, Lu Y, Zhang DY, Cheng JB, Yan HL, Xu JY, Liu XM, Kim JK, Luo YS (2014) Mesoporous, hierarchical core/shell structured ZnCo2O4/MnO2 nanocone forests for high-performance supercapacitors. Nano Energy 9:128–141

  4. Chen YP, Liu BR, Qi L, Wang J, Liu JY, Zhang HS, Hu SX, Jing XY (2015) Flexible all-solid-state asymmetric supercapacitor assembled using coaxial NiMoO4 nanowire arrays with chemically integrated conductive coating. Electrochim Acta 178:429–438

  5. Negre L, Daffos B, Turq V, Taberna PL, Simon P (2016) Ionogel-based solid-state supercapacitor operating over a wide range of temperature. Electrochim Acta 206:490–495

    Article  CAS  Google Scholar 

  6. Cui XY, Lv RT, Sagar RUR, Liu C, Zhang ZJ (2015) Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor. Electrochim Acta 169:342–350

    Article  CAS  Google Scholar 

  7. Liao QY, Li N, Jin SX, Yang GW, Wang CX (2015) All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 5:5310–5317

    Article  Google Scholar 

  8. Xu XT, Liu Y, Wang M, Zhu C, Lu T, Zhao R, Pan LK (2016) Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization. Electrochim Acta 193:88–95

  9. Chen LF, Zhang XD, Liang HW, Kong MG, Guang QF, Chen P, Wu ZY, Yu SH (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6:7092–7102

    Article  CAS  Google Scholar 

  10. Wang Q, Yan J, Wang YB, Wei T, Zhang ML, Jing XY, Fan ZJ (2014) Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67:119–127

  11. Staaf LGH, Lundgren P, Enoksson P (2014) Present and future supercapacitor carbon electrode materials for improved energy storage used in intelligent wireless sensor systems. Nano Energy 9:128–141

    Article  CAS  Google Scholar 

  12. Xiong CY, Li TH, Dang AL, Zhao TK, Li H, Lv HQ (2016) Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode. J Power Sources 306:602–610

    Article  CAS  Google Scholar 

  13. Xiang D, Yin LW, Wang CX, Zhang LY (2016) High electrochemical performance of RuO2-Fe2O3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material. Energy 106:103–111

    Article  CAS  Google Scholar 

  14. Huang TF, Zhao CH, Zheng RJ, Zhang Y, Hu ZB (2015) Facilely synthesized porous ZnCo2O4 rodlike nanostructure for high-rate supercapacitors. Ionics 21:3109–3115

    Article  CAS  Google Scholar 

  15. Kazemi SH, Tabibpour M, Kiani MA, Kazemi H (2016) An advanced asymmetric supercapacitor based on a binder-free electrode fabricated from ultrathin CoMoO4 nano-dandelions. RSC Adv 6:71156–71164

    Article  CAS  Google Scholar 

  16. Gao GX, Wu HB, Ding SJ, Liu LM, Lou XW (2015) Hierarchical NiCo2O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors. Small 7:804–808

    Article  Google Scholar 

  17. Fu YY, Lu X, Zhao WK, Zhang YX, Yang YH, Quan HL, Xu XT, Wang F (2015) Spinel CoMn2O4 nanosheet arrays grown on nickel foam for high-performance supercapacitor electrode. Appl Surf Sci 357:2013–2021

    Article  CAS  Google Scholar 

  18. Xu YN, Wang XF, An CH, Wang YJ, Jiao LF, Yuan HT (2014) Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors. J Mater Chem A 2:16480–16488

  19. Vigneshwaran P, Kandiban M, Kumar NS, Venkatachalam V, Jayavel R, Potheher IV (2016) A study on the synthesis and characterization of CoMn2O4 electrode material for supercapacitor applications. J Mater Sci: Mater Electron 27:4653–4658

    CAS  Google Scholar 

  20. Yu L, Zhang GQ, Yuan CZ, Lou XW (2013) Hierarchical NiCo2O4@MnO2 core–shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem Commun 49:137–139

    Article  CAS  Google Scholar 

  21. Kong DZ, Luo JS, Wang YL, Ren WN, Yu T, Luo YS, Yang YP, Cheng CW (2014) Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: morphology control and electrochemical energy storage. Adv Funct Mater 24:3815–3826

    Article  CAS  Google Scholar 

  22. Tang HJ, Wang JY, Yin HJ, Zhao HJ, Wang D, Tang ZY (2015) Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv Mater 27:1117–1123

    Article  CAS  Google Scholar 

  23. Liu WW, Li X, Zhu MH, He X (2015) High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J Power Sources 282:179–186

    Article  CAS  Google Scholar 

  24. Cottineau T, Toupin M, Delahaye T, Brousse T, Belanger D (2006) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys A 82:599–606

    Article  CAS  Google Scholar 

  25. Wu ZS, Ren WC, Wang DW, Li F, Liu BL, Cheng HM (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842

    Article  CAS  Google Scholar 

  26. Cheng YW, Lu ST, Zhang HB, Varanasi CV, Liu J (2012) Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for High-Performance supercapacitors. Nano Lett 12:4206–4211

    Article  CAS  Google Scholar 

  27. He YM, Chen WJ, Li XD, Zhang ZX, Fu JC, Zhao CH, Xie EQ (2013) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7:174–182

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Project of Henan Educational Committee (Grant No. 15A140035), the National Natural Science Foundation of China (Nos. 51502257, 61574122, and U1304108), and the Innovative Research Team (in Science and Technology) in the University of Henan Province (No. 13IRTSTHN018). This work was also supported by the Nanhu Scholars Program for Young Scholars of Xinyang Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsong Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, T., Hou, X., Liu, C. et al. Controlled synthesis of hierarchical CoMn2O4 nanostructures for flexible all-solid-state battery-type electrodes. J Solid State Electrochem 21, 1579–1587 (2017). https://doi.org/10.1007/s10008-017-3516-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3516-4

Keywords

Navigation