Skip to main content

Advertisement

Log in

Fabrication a thin nickel oxide layer on photoanodes for control of charge recombination in dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A thin NiO layer (∼164 nm in thickness) is fabricated on the surface of TiO2 photoanode by a simple hydrothermal method. The TiO2/NiO photoanode prepared on the hydrothermal temperature of 100 °C (TiO2/NiO-100) shows enhancement of light-harvesting ability and excellent dye adsorption amount. Moreover, the intensity-modulated photovoltage spectroscopy, intensity-modulated photocurrent spectroscopy and electrochemical impedance spectroscopy measurements illustrate that the NiO layer makes the dye-sensitized solar cells (DSSCs) with TiO2/NiO photoanodes shorten electron transport time, lengthen electron lifetime and obtain a higher charge collection efficiency than that of DSSCs with TiO2 photoanodes. Hence, the TiO2/NiO photoanode can efficiently decrease the electron transport resistance and charge recombination action. The DSSCs with TiO2/NiO-100 have an improvement photovoltaic performance and can obtain a higher value of power conversion efficiency (8.93 ± 0.34%) than that of DSSCs with TiO2 photoanodes (8.17 ± 0.33%) under full sunlight illumination (100 mW cm−2, AM 1.5 G).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  2. Zhang L, Sun H, Xue Z, Liu B, Wang Z (2015) Self-assembled ultrathin titania nanosheets as blocking layers for significantly enhanced photocurrent and photovoltage of dye-sensitized solar cells. J Mater Chem A 3:17042–17049

    Article  CAS  Google Scholar 

  3. Que L, Lan Z, Wu W, Wu J, Lin J, Huang M (2014) Titanium dioxide quantum dots: Magic materials for high performance underlayers inserted into dye-sensitized solar cells. J Power Sources 268:670–676

    Article  CAS  Google Scholar 

  4. Zhang J, Feng J, Hong Y, Zhu Y, Han L (2014) Effect of different trap states on the electron transport of photoanodes in dye sensitized solar cells. J Power Sources 257:264–271

    Article  CAS  Google Scholar 

  5. Huang S, Schlichthörl G, Nozik A, Grätzel M, Frank A (1997) Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 101:2576–2582

    Article  CAS  Google Scholar 

  6. Zhao J, Yang Y, Cui C, Hu H, Zhang Y, Xu J, Lu B, Xu L, Pan J, Tang W (2016) TiO2 hollow spheres as light scattering centers in TiO2 photoanodes for dye-sensitized solar cells: the effect of sphere diameter. J Alloys Compd 663:211–216

    Article  CAS  Google Scholar 

  7. Chang W, Tang B, Lu Y, Yu W, Lin L, Wu R (2016) Incorporating hydrangea-like titanium dioxide light scatterer with high dye-loading on the photoanode for dye-sensitized solar cells. J Power Sources 319:131–138

    Article  CAS  Google Scholar 

  8. Shanmugam M, Durcan C, Gedrim R, Bansal T, Yu B (2013) Oxygenated-graphene-enabled recombination barrier layer for high performance dye-sensitized solar cell. Carbon 60:523–530

    Article  CAS  Google Scholar 

  9. Selopal G, Memarian N, Milan R, Concina I, Sberveglieri G, Vomiero A (2014) Effect of blocking layer to boost photoconversion efficiency in ZnO dye-sensitized solar cells. ACS Appl Mater Interfaces 6:11236–11244

    Article  CAS  Google Scholar 

  10. Li W, Jin G, Hu H, Li J, Yang Y, Chen Q (2015) Phosphotungstic acid and WO3 incorporated TiO2 thin films as novel photoanodes in dye-sensitized solar cells. Electrochim Acta 153:499–507

    Article  CAS  Google Scholar 

  11. Yang P, Tang Q (2015) A nanoporous titanium dioxide framework for dye-sensitized solar cell. Mater Lett 161:185–188

    Article  CAS  Google Scholar 

  12. Alibabaei L, Farnum B, Kalanyan B, Brennaman M, Losego M, Parsons G, Meyer T (2014) Atomic layer deposition of TiO2 on mesoporous nanoITO: conductive core-shell photoanodes for dye-sensitized solar cells. Nano Lett 14:3255–3261

    Article  CAS  Google Scholar 

  13. Tang Y, Hu X, Chen M, Luo L, Li B, Zhang L (2009) CdSe nanocrystal sensitized ZnO core-shell nanorod array films: preparation and photovoltaic properties. Electrochim Acta 54:2742–2747

    Article  CAS  Google Scholar 

  14. Yang Y, Zhao J, Cui C, Zhang Y, Hu H, Xu L (2016) Hydrothermal growth of ZnO nanowires scaffolds within mesoporous TiO2 photoanodes for dye-sensitized solar cells with enhanced efficiency. Electrochim Acta 196:348–356

    Article  CAS  Google Scholar 

  15. Chappel S, Chen S, Zaban A (2002) TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells. Langmuir 18:3336–3342

    Article  CAS  Google Scholar 

  16. Kim H, Moon J (2012) Enhanced photovoltaic properties of Nb2O5-coated TiO2 3D ordered porous electrodes in dye-sensitized solar cells. ACS Appl Mater Interfaces 4:5821–5825

    Article  CAS  Google Scholar 

  17. Li L, Xu C, Zhao Y, Chen S, Ziegler K (2015) Improving performance via blocking layers in dye-sensitized solar cells based on nanowire photoanodes. ACS Appl Mater Interfaces 7:12824–12831

    Article  CAS  Google Scholar 

  18. Muduli S, Game O, Dhas V, Vijayamohanan K, Bogle K, Valanoor N, Ogalea S (2012) TiO2-Au plasmonic nanocomposite for enhanced dye-sensitized solar cell (DSSC) performance. Sol Energy 86:1428–1434

    Article  CAS  Google Scholar 

  19. Yan H, Wang J, Feng B, Ke D, Jie W (2015) Graphene and Ag nanowires co-modified photoanodes for high-efficiency dye-sensitized solar cells. Sol Energy 122:966–975

    Article  CAS  Google Scholar 

  20. Zhi J, Chen A, Cui H, Xie Y, Huang F (2015) NiO-decorated mesoporous TiO2 flowers for an improved photovoltaic dye sensitized solar cell. Phys Chem Chem Phys 17:5103–5108

    Article  CAS  Google Scholar 

  21. Liu Q (2015) Influence of interface properties on charge density, band edge shifts and kinetics of the photoelectrochemical process in p-type NiO photocathodes. RSC Adv 5:71778–71784

    Article  CAS  Google Scholar 

  22. Baptiste P, Franck T, François C, Laurent C, Fabrice O, Stéphane J (2016) Synthesis of Ni-poor NiO nanoparticles for p-DSSC applications. Solid State Sci 54:37–42

    Article  Google Scholar 

  23. Habibi M, Karimi B, Zendehdel M, Habibi M (2013) Fabrication, characterization of two nano-composite CuO-ZnO working electrodes for dye-sensitized solar cell. Spectrochim Acta A 116:374–380

    Article  CAS  Google Scholar 

  24. Matteo B, Danilo D (2016) Nanostructured p-type semiconductor electrodes and photoelectrochemistry of their reduction processes. Energies 9:373–404

    Article  Google Scholar 

  25. Bandara J, Divarathne C, Nanayakkara S (2004) Fabrication of n-p junction electrodes made of n-type SnO2 and p-type NiO for control of charge recombination in dye sensitized solar cells. Sol Energ Mat Sol C 81:429–437

    Article  CAS  Google Scholar 

  26. Chou C, Lin Y, Yang R, Liu K (2011) Preparation of TiO2/NiO composite particles and their applications in dye-sensitized solar cells. Adv Powder Technol 22:31–42

    Article  CAS  Google Scholar 

  27. Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851

    Article  Google Scholar 

  28. Wu J, Yue G, Xiao Y, Lin J, Huang M, Lan Z, Tang Q, Huang Y, Fan L, Yin S, Sato T (2013) An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene). Sci Rep 3:691–695

    Google Scholar 

  29. Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl Mater Interfaces 5:2188–2196

    Article  CAS  Google Scholar 

  30. Lei B, Zhang P, Qiao H, Zheng X, Hu Y, Huang G, Sun W, Sun Z, Zhang X (2014) A facile template-free route for synthesis of anatase TiO2 hollow spheres for dye-sensitized solar cells. Electrochim Acta 143:129–134

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (Nos. 91422301, U1205112, 21301060, 61306077 and 61474047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihuai Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, J., Tu, Y., Zheng, M. et al. Fabrication a thin nickel oxide layer on photoanodes for control of charge recombination in dye-sensitized solar cells. J Solid State Electrochem 21, 1523–1531 (2017). https://doi.org/10.1007/s10008-017-3515-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3515-5

Keywords

Navigation