Skip to main content

Advertisement

Log in

Nitrogen and sulfur co-doped polyurethane-based porous carbon materials as supercapacitors exhibit excellent electrochemical performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nitrogen and sulfur porous co-doped carbonized materials were successfully prepared from polyurethane (PU) using KOH as an activating agent with promising electrochemical performances. Many micropores imbedded in the carbon materials are beneficial to electrolyte transport and the resulting specific surface area of the porous samples is up to 2216 m2 g−1 measured by the N2 adsorption–desorption method. The electrochemical performances of the activated carbon samples were tested as supercapacitors in a three-electrode system and the Ragone plot was examined in a two-electrode cell with a 6 M KOH solution as electrolytes. The specific capacitance of porous carbon material PUC-2:1 (the mass ratio of KOH and PUC was 2:1 at an active temperature of 750 °C for 2 h) reaches 395 F g−1 at the current density of 1 A g−1, and the capacitance retention is 95.3% after 4000 charge–discharge cycles at a large current density of 10 A g−1. The energy density of PUC-2:1 is 24.4 Wh kg−1 at the power density of 1080 W kg−1 and still retains 12.6 Wh kg−1 with a high power density of 21.6 kW kg−1 at a high current density of 10 A g−1. Such a high energy density at a large power density provides potential application in high performance of energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

    Article  CAS  Google Scholar 

  2. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850

    Article  CAS  Google Scholar 

  3. Xiong W, Liu M, Gan L, Lv Y, Li Y, Yang L, Xu Z, Hao Z, Liu H, Chen L (2011) A novel synthesis of mesoporous carbon microspheres for supercapacitor electrodes. J Power Sources 196:10461–10464

    Article  CAS  Google Scholar 

  4. Long D, Lu F, Zhang R, Qiao W, Zhan L, Liang X, Ling L (2008) Suspension assisted synthesis of triblock copolymer-templated ordered mesoporous carbon spheres with controlled particle size. Chem Commun: 2647–2649

  5. Xia Y, Mokaya R (2004) Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method. Adv Mater 16:1553–1558

    Article  CAS  Google Scholar 

  6. Wu Z, Li W, Xia Y, Webley P, Zhao D (2012) Ordered mesoporous graphitized pyrolytic carbon materials: synthesis, graphitization, and electrochemical properties. J Mater Chem 22:8835

    Article  CAS  Google Scholar 

  7. Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. ChemSoc Rev 42:3127–3171

    CAS  Google Scholar 

  8. Frackowiak E (2007) Carbon materials for supercapacitor application. PhysChemChemPhys 9:1774–1785

    CAS  Google Scholar 

  9. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Article  CAS  Google Scholar 

  10. Xu B, Wu F, Su Y, Cao G, Chen S, Zhou Z, Yang Y (2008) Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: balance between porosity and conductivity. ElectrochimActa 53:7730–7735

    Article  CAS  Google Scholar 

  11. Jiang J, Chen H, Wang Z, Bao L, Qiang Y, Guan S, Chen J (2015) Nitrogen-doped hierarchical porous carbon microsphere through KOH activation for supercapacitors. J Colloid InterfSci 452:54–61

    Article  CAS  Google Scholar 

  12. Zhou J, Li N, Gao F, Zhao Y, Hou L, Xu Z (2014) Vertically-aligned BCN nanotube arrays with superior performance in electrochemical capacitors. Sci Rep-UK 4:6083

    CAS  Google Scholar 

  13. Shang TX, Cai XX, Jin XJ (2015) Phosphorus- and nitrogen-co-doped particleboard based activated carbon in supercapacitor application. RSC Adv 5:16433–16438

    Article  CAS  Google Scholar 

  14. Fang Y, Luo B, Jia Y, Li X, Wang B, Song Q, Kang F, Zhi L (2012) Renewing functionalized graphene as electrodes for high-performance supercapacitors. Adv Mater 24:6348–6355

    Article  CAS  Google Scholar 

  15. Wu X, Yang D, Wang C, Jiang Y, Wei T, Fan Z (2015) Functionalized three-dimensional graphene networks for high performance supercapacitors. Carbon 92:26–30

    Article  CAS  Google Scholar 

  16. Yu X, Park HS (2014) Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors. Carbon 77:59–65

    Article  CAS  Google Scholar 

  17. Paraknowitsch JP, Thomas A, Antonietti M (2010) A detailed view on the polycondensation of ionic liquid monomers towards nitrogen doped carbon materials. J Mater Chem 20:6746

    Article  CAS  Google Scholar 

  18. Ma X, Ning G, Kan Y, Ma Y, Qi C, Chen B, Li Y, Lan X, Gao J (2014) Synthesis of S-doped mesoporous carbon fibres with ultrahigh S concentration and their application as high performance electrodes in supercapacitors. ElectrochimActa 150:108–113

    Article  CAS  Google Scholar 

  19. Poh HL, Šimek P, Sofer Z, Pumera M (2013) Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. ACS Nano 7:5262–5272

    Article  CAS  Google Scholar 

  20. Huang Y, Candelaria SL, Li Y, Li Z, Tian J, Zhang L, Cao G (2014) Sulfurized activated carbon for high energy density supercapacitors. J Power Sources 252:90–97

    Article  CAS  Google Scholar 

  21. Shih P-T, Dong R-X, Shen S-Y, Vittal R, Lin J-J, Ho K-C (2014) Transparent graphene–platinum nanohybrid films for counter electrodes in high efficiency dye-sensitized solar cells. J Mater Chem A 2:8742

    Article  CAS  Google Scholar 

  22. Zhou Y, Candelaria SL, Liu Q, Uchaker E, Cao G (2015) Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds. Nano Energy 12:567–577

    Article  CAS  Google Scholar 

  23. Zhang D, Zheng L, Ma Y, Lei L, Li Q, Li Y, Luo H, Feng H, Hao Y (2014) Synthesis of nitrogen- and sulfur-codoped 3D cubic-ordered mesoporous carbon with superior performance in supercapacitors. ACS Appl Mater Inter 6:2657–2665

    Article  CAS  Google Scholar 

  24. Zhang D, Hao Y, Zheng L, Ma Y, Feng H, Luo H (2013) Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance. J Mater Chem A 1:7584

    Article  CAS  Google Scholar 

  25. Chen W, Shi J, Zhu T, Wang Q, Qiao J, Zhang J (2015) Preparation of nitrogen and sulfur dual-doped mesoporous carbon for supercapacitor electrodes with long cycle stability. ElectrochimActa 177:327–334

    Article  CAS  Google Scholar 

  26. Zhang J, Zhou J, Wang D, Hou L, Gao F (2016) Nitrogen and sulfur codoped porous carbon microsphere: a high performance electrode in supercapacitor. ElectrochimActa 191:933–939

    Article  CAS  Google Scholar 

  27. Liu M, Gan L, Xiong W, Zhao F, Fan X, Zhu D, Xu Z, Hao Z, Chen L (2013) Nickel-doped activated mesoporous carbon microspheres with partially graphitic structure for supercapacitors. Energ Fuel 27:1168–1173

    Article  CAS  Google Scholar 

  28. Datta KK, Balasubramanian VV, Ariga K, Mori T, Vinu A (2011) Highly crystalline and conductive nitrogen-doped mesoporous carbon with graphitic walls and its electrochemical performance. Chem-Eur J 17:3390–3397

    Article  CAS  Google Scholar 

  29. Yoon SB, Chai GS, Kang SK, Yu J-S, Gierszal KP, Jaroniec M (2005) Graphitized pitch-based carbons with ordered nanopores synthesized by using colloidal crystals as templates. J Am ChemSoc 127:4188–4189

    Article  CAS  Google Scholar 

  30. Hang TTX, Dung NT, Truc TA, Duong NT, Van Truoc B, Vu PG, Hoang T, Thanh DTM, Olivier M-G (2015) Effect of silane modified nanoZnO on UV degradation of polyurethane coatings. Prog Org Coat 79:68–74

    Article  CAS  Google Scholar 

  31. Mishra A, Aswal VK, Maiti P (2010) Nanostructure to microstructure self-assembly of aliphatic polyurethanes: the effect on mechanical properties. J PhysChem B 114:5292–5300

    CAS  Google Scholar 

  32. Wang W, Jin Y, Su Z (2009) Spectroscopic study on water diffusion in poly (ester urethane) block copolymer matrix. J PhysChem B 113:15742–15746

    CAS  Google Scholar 

  33. Gao W, Feng X, Zhang T, Huang H, Li J, Song W (2014) One-step pyrolytic synthesis of nitrogen and sulfur dual-doped porous carbon with high catalytic activity and good accessibility to small biomolecules. ACS Appl Mater Inter 6:19109–19117

    Article  CAS  Google Scholar 

  34. Kannan AG, Zhao J, Jo SG, Kang YS, Kim D-W (2014) Nitrogen and sulfur co-doped graphene counter electrodes with synergistically enhanced performance for dye-sensitized solar cells. J Mater Chem A 2:12232

    Article  CAS  Google Scholar 

  35. Jagannathan S, Chae HG, Jain R, Kumar S (2008) Structure and electrochemical properties of activated polyacrylonitrile based carbon fibers containing carbon nanotubes. J Power Sources 185:676–684

    Article  CAS  Google Scholar 

  36. Xu G, Han J, Ding B, Nie P, Pan J, Dou H, Li H, Zhang X (2015) Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem 17:1668–1674

    Article  CAS  Google Scholar 

  37. Wu K, Liu Q (2016) Nitrogen-doped mesoporous carbons for high performance supercapacitors. Appl Surf Sci 379:132–139

    Article  CAS  Google Scholar 

  38. Fechler N, Fellinger T-P, Antonietti M (2013) One-pot synthesis of nitrogen–sulfur-co-doped carbons with tunable composition using a simple isothiocyanate ionic liquid. J Mater Chem A 1:14097

    Article  CAS  Google Scholar 

  39. Lv Y, Zhang F, Dou Y, Zhai Y, Wang J, Liu H, Xia Y, Tu B, Zhao D (2012) A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. J Mater Chem 22:93–99

    Article  CAS  Google Scholar 

  40. Lei Z, Bai D, Zhao XS (2012) Improving the electrocapacitive properties of mesoporous CMK-5 carbon with carbon nanotubes and nitrogen doping. MicroporMesopor Mat 147:86–93

    Article  Google Scholar 

  41. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764

    Article  CAS  Google Scholar 

  42. Zhao X, Zhang Q, Chen C-M, Zhang B, Reiche S, Wang A, Zhang T, Schlögl R, Sheng Su D (2012) Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor. Nano Energy 1:624–630

    Article  CAS  Google Scholar 

  43. Wu Z-S, Ren W, Xu L, Li F, Cheng H-M (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471

    Article  CAS  Google Scholar 

  44. Wang G, Huang J, Chen S, Gao Y, Cao D (2011) Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J Power Sources 196:5756–5760

    Article  CAS  Google Scholar 

  45. Wang S, Gai L, Zhou J, Jiang H, Sun Y, Zhang H (2015) Thermal cyclodebromination of polybromopyrroles to polymer with high performance for supercapacitor. J PhysChem C 119:3881–3891

    CAS  Google Scholar 

  46. Seredych M, Hulicova-Jurcakova D, Lu GQ, Bandosz TJ (2008) Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46:1475–1488

    Article  CAS  Google Scholar 

  47. Chen X, Wang H, Yi H, Wang X, Yan X, Guo Z (2014) Anthraquinone on porous carbon nanotubes with improved supercapacitor performance. J PhysChem C 118:8262–8270

    CAS  Google Scholar 

  48. Qian W, Sun F, Xu Y, Qiu L, Liu C, Wang S, Yan F (2014) Human hair-derived carbon flakes for electrochemical supercapacitors. Energ Environ Sci 7(1):379–386

    Article  CAS  Google Scholar 

  49. Deng W, Zhang Y, Yang L, Tan Y, Ma M, Xie Q (2015) Sulfur-doped porous carbon nanosheets as an advanced electrode material for supercapacitors. RSC Adv 5:13046–13051

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the first batch of Natural Science Foundation of Shandong Province (ZR2015BM001) and the Doctoral Startup Foundation of Qilu University of Technology (12042826).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Li.

Electronic supplementary material

ESM 1

(DOC 344 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, S., Yang, X., Lin, X. et al. Nitrogen and sulfur co-doped polyurethane-based porous carbon materials as supercapacitors exhibit excellent electrochemical performance. J Solid State Electrochem 21, 1457–1465 (2017). https://doi.org/10.1007/s10008-017-3505-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3505-7

Keywords

Navigation