Skip to main content
Log in

Investigation of carbon steel anodic dissolution in ammonium chloride solutions using electrochemical impedance spectroscopy

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The anodic dissolution of carbon steel in ammonium chloride (NH4Cl) solutions (5, 10, and 20 wt%) is investigated via various electrochemical techniques and other complementary techniques. The polarization measurements reveals that the carbon steel is susceptible to general corrosion. The impedance data taken at various overpotentials shows multiple loops, corresponding to capacitance, inductance, and negative capacitance, and the number of time constants observed is also not the same for various NH4Cl concentrations. From reaction mechanism analysis, a multi-step reaction mechanism with three adsorbed intermediates and three dissolution paths (one chemical path and two electrochemical paths) is proposed to describe the observed patterns in impedance measurements. The surface coverage of intermediate species and the contribution of chemical reaction and electrochemical reaction to the overall corrosion rate are also estimated from the proposed model. The results obtained from field emission scanning electron microscopy and Raman spectroscopy measurements are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alvisi PP, Lins VDFC (2008) Eng Fail Anal 15:1035–1041

    Article  CAS  Google Scholar 

  2. Speight J (2015) Fouling in refineries. Elsevier Science and Technology, United Kingdom

    Google Scholar 

  3. Toba K, Suzuki T, Kawano K, Sakai J (2011) NACE Intl 67:0550051 (1-7)

    Google Scholar 

  4. Toba K, Ueyama M, Kawano K, Sakai J (2012) NACE Intl 68:1049–1056

    CAS  Google Scholar 

  5. Forsen O, Aromaa J, Tavi M (1993) Corros Sci 35:297–301

    Article  CAS  Google Scholar 

  6. Samide A, Bibicu I, Rogalski MS, Preda M (2004) J Radioanal Nucl Chem 261:593–596

    Article  CAS  Google Scholar 

  7. Tutunaru B, Samide A, Negrila C (2013) J Therm Anal Calorim 111:1149–1154

    Article  CAS  Google Scholar 

  8. Heusler KE (1958) Z Elektrochem 62:582

    CAS  Google Scholar 

  9. Bockris JOM, Drazic D, Despic AR (1961) Electrochim Acta 4:325–361

    Article  CAS  Google Scholar 

  10. Bockris JOM, Kita H (1961) J Electrochem Soc 108:676–685

    Article  CAS  Google Scholar 

  11. Bockris JOM, Drazic D (1962) Electrochim Acta 7:293–313

    Article  CAS  Google Scholar 

  12. Keddam M, Mattos OR, Takenouti H (1981) J Electrochem Soc 128:257–266

    Article  CAS  Google Scholar 

  13. Li W, Nobe K, Pearlstein AJ (1990) Corros Sci 31:615–620

    Article  CAS  Google Scholar 

  14. Macdonald JR, Barsoukov E (2005) Impedance spectroscopy: theory, experiment and applications, 2nd edn. Wiley, New Jersey

    Google Scholar 

  15. Orazem M, Tribollet B (2008) Electrochemical impedance spectroscopy. John Wiley and Sons, New Jersey

    Book  Google Scholar 

  16. Macdonald DD (2006) Electrochim Acta 51:1376–1388

    Article  CAS  Google Scholar 

  17. Zhang XG (1996) Corrosion and electrochemistry of zinc, 1st edn. Plenum, New York

    Book  Google Scholar 

  18. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  19. Prasad YN, Kumar VV, Ramanathan S (2009) J Solid State Electrochem 13:1351–1359

    Article  Google Scholar 

  20. Venkatesh RP, Ramanathan S (2010) J Appl Electrochem 40:767–776

    Article  Google Scholar 

  21. Maddala J, Krishnaraj S, Kumar VV, Ramanathan S (2010) J Electroanal Chem 638:183–188

    Article  CAS  Google Scholar 

  22. Trueba M, Trasatti SP (2010) Mater Chem Phy 121:523–533

    Article  CAS  Google Scholar 

  23. Kuo HS, Chang H, Tsai WT (1999) Corros Sci 41:669–684

    Article  CAS  Google Scholar 

  24. McCafferty E (2010) Introduction to corrosion science, 1st edn. Springer, New York

    Book  Google Scholar 

  25. Cáceres L, Vargas T, Herrera L (2009) Corros Sci 51:971–978

    Article  Google Scholar 

  26. Lin B, Hu R, Ye C, Li Y, Lin C (2010) Electrochim Acta 55:6542–6545

    Article  CAS  Google Scholar 

  27. Mao X, Liu X, Revie RW (1994) Corros Sci 50:651–657

    Article  CAS  Google Scholar 

  28. Zaid B, Saidi D, Zaid AB, Hadji S (2008) Corros Sci 50:1841–1847

    Article  CAS  Google Scholar 

  29. Venkatesh RP, Ramanathan S (2010) J Solid State Electrochem 14:2057–2064

    Article  Google Scholar 

  30. Strměnik D, Gaberšček M, Pihlar B, Kočar D, Jamnik J (2009) J Electrochem Soc 156:C222–C229

    Article  Google Scholar 

  31. Agarwal P, Orazem ME (1995) J Electrochem Soc 142:4159–4168

    Article  CAS  Google Scholar 

  32. Boukamp BA (1995) J Electrochem Soc 142:1885–1894

    Article  CAS  Google Scholar 

  33. Macdonald MU, Real S, Macdonald DD (1986) J Electrochem Soc 133:2018–2024

    Article  Google Scholar 

  34. Lu J, Garland JE, Pettit CM, Babu SV, Roy D (2004) J Electrochem Soc 151(10):G717–G722

    Article  CAS  Google Scholar 

  35. Cho BJ, Venkatesh RP, Kwon TY, Park JG (2013) Intl J Electrochem Sci 8:4723–4734

    CAS  Google Scholar 

  36. Freitas S, Malacarne MM, Romao W, Dalmaschio GP, Castro EVR, Celante VG, Freitas MBJG (2013) Fuel 104:656–663

    Article  CAS  Google Scholar 

  37. Fasmin F, Praveen BVS, Ramanathan S (2015) J Electrochem Soc 162(9):H604–H610

    Article  CAS  Google Scholar 

  38. Macdonald DD, Real S, Smedley SI (1988) Urquidi-Macdonald. J Electrochem Soc 135:2410–2414

    Article  CAS  Google Scholar 

  39. Bojinov M (1996) J Electroanal Chem 405:15–22

    Article  Google Scholar 

  40. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) Electrochim Acta 55:6218–6227

    Article  CAS  Google Scholar 

  41. Germain PS, Pell WG, Conway BE (2004) Electrochim Acta 49:1775–1788

    Article  CAS  Google Scholar 

  42. Sadkowski A (2000) J Electroanal Chem 481:222–226

    Article  CAS  Google Scholar 

  43. Sadkowski A (2000) J Electroanal Chem 481:232–236

    Article  CAS  Google Scholar 

  44. Pajkossy T (2005) Solid State Ionics 176:1997–2003

    Article  CAS  Google Scholar 

  45. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) J Electrochem Soc 157:C452–C457

    Article  CAS  Google Scholar 

  46. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) J Electrochem Soc 157:C458–C463

    Article  CAS  Google Scholar 

  47. Oh SJ, Cook DC, Townsend HE (1998) Hyperfine Interact 112:59–65

    Article  CAS  Google Scholar 

  48. Adhyapak PV, Mulik UP, Amalnerkar DP, Mulla IS (2013) J Am Ceram Soc 96(3):731–735

    Article  CAS  Google Scholar 

  49. Wang A, Haskin LA, Jolliff BL (1998) Lunar Planet Sci Conf 29

Download references

Acknowledgements

This work was supported by DST-SERB, India (SERB/F/1365/2014-15). We acknowledge Central Instruments Facility of Indian Institute of Technology, Guwahati, India for providing facility for FESEM and Raman spectroscopy analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Prasanna Venkatesh.

Electronic supplementary material

.

ESM 1

(DOCX 611 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranwal, P.K., Prasanna Venkatesh, R. Investigation of carbon steel anodic dissolution in ammonium chloride solutions using electrochemical impedance spectroscopy. J Solid State Electrochem 21, 1373–1384 (2017). https://doi.org/10.1007/s10008-016-3497-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3497-8

Keywords

Navigation